Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason E. Koglin is active.

Publication


Featured researches published by Jason E. Koglin.


The Astrophysical Journal | 2013

The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-Ray Mission

Fiona A. Harrison; William W. Craig; Finn Erland Christensen; Charles J. Hailey; William W. Zhang; Steven E. Boggs; Daniel Stern; W. Rick Cook; Karl Forster; Paolo Giommi; Brian W. Grefenstette; Yunjin Kim; Takao Kitaguchi; Jason E. Koglin; Kristin K. Madsen; Peter H. Mao; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; Michael J. Pivovaroff; S. Puccetti; V. Rana; Niels Jørgen Stenfeldt Westergaard; Jason Willis; Andreas Zoglauer; Hongjun An; Matteo Bachetti; Eric C. Bellm; Varun Bhalerao; Nicolai F. Brejnholt

The Nuclear Spectroscopic Telescope Array (NuSTAR) is a National Aeronautics and Space Administration (NASA) Small Explorer mission that carried the first focusing hard X-ray (6-79 keV) telescope into orbit. It was launched on a Pegasus rocket into a low-inclination Earth orbit on June 13, 2012, from Reagan Test Site, Kwajalein Atoll. NuSTAR will carry out a two-year primary science mission. The NuSTAR observatory is composed of the X-ray instrument and the spacecraft. The NuSTAR spacecraft is three-axis stabilized with a single articulating solar array based on Orbital Sciences Corporations LEOStar-2 design. The NuSTAR science instrument consists of two co-aligned grazing incidence optics focusing on to two shielded solid state CdZnTe pixel detectors. The instrument was launched in a compact, stowed configuration, and after launch, a 10-meter mast was deployed to achieve a focal length of 10.15 m. The NuSTAR instrument provides sub-arcminute imaging with excellent spectral resolution over a 12-arcminute field of view. The NuSTAR observatory will be operated out of the Mission Operations Center (MOC) at UC Berkeley. Most science targets will be viewed for a week or more. The science data will be transferred from the UC Berkeley MOC to a Science Operations Center (SOC) located at the California Institute of Technology (Caltech). In this paper, we will describe the mission architecture, the technical challenges during the development phase, and the post-launch activities.


Nature Communications | 2014

Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography

Uwe Weierstall; Daniel James; Chong Wang; Thomas A. White; Dingjie Wang; Wei Liu; John C. Spence; R. Bruce Doak; Garrett Nelson; Petra Fromme; Raimund Fromme; Ingo Grotjohann; Christopher Kupitz; Nadia A. Zatsepin; Haiguang Liu; Shibom Basu; Daniel Wacker; Gye Won Han; Vsevolod Katritch; Sébastien Boutet; Marc Messerschmidt; Garth J. Williams; Jason E. Koglin; M. Marvin Seibert; Markus Klinker; Cornelius Gati; Robert L. Shoeman; Anton Barty; Henry N. Chapman; Richard A. Kirian

Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.


Science | 2013

Serial femtosecond crystallography of G protein-coupled receptors.

Wei Liu; Daniel Wacker; Cornelius Gati; Gye Won Han; Daniel James; Dingjie Wang; Garrett Nelson; Uwe Weierstall; Vsevolod Katritch; Anton Barty; Nadia A. Zatsepin; Dianfan Li; Marc Messerschmidt; Sébastien Boutet; Garth J. Williams; Jason E. Koglin; M. Marvin Seibert; Chong Wang; Syed T. A. Shah; Shibom Basu; Raimund Fromme; Christopher Kupitz; Kimberley Rendek; Ingo Grotjohann; Petra Fromme; Richard A. Kirian; Kenneth R. Beyerlein; Thomas A. White; Henry N. Chapman; Martin Caffrey

G Structures G protein–coupled receptors (GPCRs) are eukaryotic membrane proteins that have a central role in cellular communication and have become key drug targets. To overcome the difficulties of growing GPCRs crystals, Liu et al. (p. 1521) used an x-ray free-electron laser to determine a high-resolution structure of the serotonin receptor from microcrystals. The structure of a human serotonin receptor was solved using a free-electron laser to analyze microcrystals. X-ray crystallography of G protein–coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. We used an x-ray free-electron laser (XFEL) with individual 50-femtosecond-duration x-ray pulses to minimize radiation damage and obtained a high-resolution room-temperature structure of a human serotonin receptor using sub-10-micrometer microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared with the structure solved by using traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room-temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment.


Science | 2013

Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.

Jan Kern; Roberto Alonso-Mori; Rosalie Tran; Johan Hattne; Richard J. Gildea; Nathaniel Echols; Carina Glöckner; Julia Hellmich; Hartawan Laksmono; Raymond G. Sierra; Benedikt Lassalle-Kaiser; Sergey Koroidov; Alyssa Lampe; Guangye Han; Sheraz Gul; Dörte DiFiore; Despina Milathianaki; Alan Fry; A. Miahnahri; Donald W. Schafer; Marc Messerschmidt; M. Marvin Seibert; Jason E. Koglin; Dimosthenis Sokaras; Tsu-Chien Weng; Jonas A. Sellberg; Matthew J. Latimer; Ralf W. Grosse-Kunstleve; Petrus H. Zwart; William E. White

One Protein, Two Probes A central challenge in the use of x-ray diffraction to characterize macromolecular structure is the propensity of the high-energy radiation to damage the sample during data collection. Recently, a powerful accelerator-based, ultrafast x-ray laser source has been used to determine the geometric structures of small protein crystals too fragile for conventional diffraction techniques. Kern et al. (p. 491, published online 14 February) now pair this method with concurrent x-ray emission spectroscopy to probe electronic structure, as well as geometry, and were able to characterize the metal oxidation states in the oxygen-evolving complex within photosystem II crystals, while simultaneously verifying the surrounding protein structure. A powerful x-ray laser source can extract the geometry and electronic structure of metalloenzymes prior to damaging them. Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.


Science | 2014

Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein

Jason Tenboer; Shibom Basu; Nadia A. Zatsepin; Kanupriya Pande; Despina Milathianaki; Matthias Frank; Mark S. Hunter; Sébastien Boutet; Garth J. Williams; Jason E. Koglin; Dominik Oberthuer; Michael Heymann; Christopher Kupitz; Chelsie E. Conrad; Jesse Coe; Shatabdi Roy-Chowdhury; Uwe Weierstall; Daniel James; Dingjie Wang; Thomas D. Grant; Anton Barty; Oleksandr Yefanov; Jennifer Scales; Cornelius Gati; Carolin Seuring; Vukica Šrajer; Robert Henning; Peter Schwander; Raimund Fromme; A. Ourmazd

Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of excellent quality with strong features; these allowed the determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our results open the way to the study of reversible and nonreversible biological reactions on time scales as short as femtoseconds under conditions that maximize the extent of reaction initiation throughout the crystal. Structural changes during a macromolecular reaction are captured at near-atomic resolution by an x-ray free electron laser. Watching a protein molecule in motion X-ray crystallography has yielded beautiful high-resolution images that give insight into how proteins function. However, these represent static snapshots of what are often dynamic processes. For photosensitive molecules, time-resolved crystallography at a traditional synchrotron source provides a method to follow structural changes with a time resolution of about 100 ps. X-ray free electron lasers (XFELs) open the possibility of performing time-resolved experiments on time scales as short as femtoseconds. Tenboer et al. used XFELs to study the light-triggered dynamics of photoactive yellow protein. Electron density maps of high quality were obtained 10 ns and 1 µs after initiating the reaction. At 1 µs, two intermediates revealed previously unidentified structural changes. Science, this issue p. 1242


Nature | 2014

De novo protein crystal structure determination from X-ray free-electron laser data

Thomas R. M. Barends; Lutz Foucar; Sabine Botha; R. Bruce Doak; Robert L. Shoeman; Karol Nass; Jason E. Koglin; Garth J. Williams; Sébastien Boutet; Marc Messerschmidt; Ilme Schlichting

The determination of protein crystal structures is hampered by the need for macroscopic crystals. X-ray free-electron lasers (FELs) provide extremely intense pulses of femtosecond duration, which allow data collection from nanometre- to micrometre-sized crystals in a ‘diffraction-before-destruction’ approach. So far, all protein structure determinations carried out using FELs have been based on previous knowledge of related, known structures. Here we show that X-ray FEL data can be used for de novo protein structure determination, that is, without previous knowledge about the structure. Using the emerging technique of serial femtosecond crystallography, we performed single-wavelength anomalous scattering measurements on microcrystals of the well-established model system lysozyme, in complex with a lanthanide compound. Using Monte-Carlo integration, we obtained high-quality diffraction intensities from which experimental phases could be determined, resulting in an experimental electron density map good enough for automated building of the protein structure. This demonstrates the feasibility of determining novel protein structures using FELs. We anticipate that serial femtosecond crystallography will become an important tool for the structure determination of proteins that are difficult to crystallize, such as membrane proteins.


Science | 2015

Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation

Thomas R. M. Barends; Lutz Foucar; Albert Ardevol; Karol Nass; Andrew Aquila; Sabine Botha; R. Bruce Doak; Konstantin Falahati; Elisabeth Hartmann; M. Hilpert; Marcel Heinz; Matthias C. Hoffmann; Jürgen Köfinger; Jason E. Koglin; Gabriela Kovácsová; Mengning Liang; Despina Milathianaki; Henrik T. Lemke; Jochen Reinstein; C.M. Roome; Robert L. Shoeman; Garth J. Williams; Irene Burghardt; Gerhard Hummer; Sébastien Boutet; Ilme Schlichting

Observing ultrafast myoglobin dynamics The oxygen-storage protein myoglobin was the first to have its three-dimensional structure determined and remains a workhorse for understanding how protein structure relates to function. Barends et al. used x-ray free-electron lasers with femtosecond short pulses to directly observe motions that occur within half a picosecond of CO dissociation (see the Perspective by Neutze). Combining the experiments with simulations shows that ultrafast motions of the heme couple to subpicosecond protein motions, which in turn couple to large-scale motions. Science, this issue p. 445, see also p. 381 Time-resolved crystallography at an x-ray laser reveals ultrafast structural changes in myoglobin upon ligand dissociation. [Also see Perspective by Neutze] The hemoprotein myoglobin is a model system for the study of protein dynamics. We used time-resolved serial femtosecond crystallography at an x-ray free-electron laser to resolve the ultrafast structural changes in the carbonmonoxy myoglobin complex upon photolysis of the Fe-CO bond. Structural changes appear throughout the protein within 500 femtoseconds, with the C, F, and H helices moving away from the heme cofactor and the E and A helices moving toward it. These collective movements are predicted by hybrid quantum mechanics/molecular mechanics simulations. Together with the observed oscillations of residues contacting the heme, our calculations support the prediction that an immediate collective response of the protein occurs upon ligand dissociation, as a result of heme vibrational modes coupling to global modes of the protein.


Nature Communications | 2014

Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy

Jan Kern; Rosalie Tran; Roberto Alonso-Mori; Sergey Koroidov; Nathaniel Echols; Johan Hattne; Mohamed Ibrahim; Sheraz Gul; Hartawan Laksmono; Raymond G. Sierra; Richard J. Gildea; Guangye Han; Julia Hellmich; Benedikt Lassalle-Kaiser; Ruchira Chatterjee; Aaron S. Brewster; Claudiu A. Stan; Carina Glöckner; Alyssa Lampe; Dörte DiFiore; Despina Milathianaki; Alan Fry; M. Marvin Seibert; Jason E. Koglin; Erik Gallo; Jens Uhlig; Dimosthenis Sokaras; Tsu-Chien Weng; Petrus H. Zwart; David E. Skinner

The dioxygen we breathe is formed from water by its light-induced oxidation in photosystem II. O2 formation takes place at a catalytic manganese cluster within milliseconds after the photosystem II reaction center is excited by three single-turnover flashes. Here we present combined X-ray emission spectra and diffraction data of 2 flash (2F) and 3 flash (3F) photosystem II samples, and of a transient 3F′ state (250 μs after the third flash), collected under functional conditions using an X-ray free electron laser. The spectra show that the initial O-O bond formation, coupled to Mn-reduction, does not yet occur within 250 μs after the third flash. Diffraction data of all states studied exhibit an anomalous scattering signal from Mn but show no significant structural changes at the present resolution of 4.5 Å. This study represents the initial frames in a molecular movie of the structural changes during the catalytic reaction in photosystem II.


Science | 2016

Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein.

Kanupriya Pande; C. Hutchison; Gerrit Groenhof; Andy Aquila; Josef S. Robinson; Jason Tenboer; Shibom Basu; Sébastien Boutet; Daniel P. DePonte; Mengning Liang; Thomas A. White; Nadia A. Zatsepin; Oleksandr Yefanov; Dmitry Morozov; Dominik Oberthuer; Cornelius Gati; Ganesh Subramanian; Daniel James; Yun Zhao; J. D. Koralek; Jennifer Brayshaw; Christopher Kupitz; Chelsie E. Conrad; Shatabdi Roy-Chowdhury; Jesse Coe; Markus Metz; Paulraj Lourdu Xavier; Thomas D. Grant; Jason E. Koglin; Gihan Ketawala

Visualizing a response to light Many biological processes depend on detecting and responding to light. The response is often mediated by a structural change in a protein that begins when absorption of a photon causes isomerization of a chromophore bound to the protein. Pande et al. used x-ray pulses emitted by a free electron laser source to conduct time-resolved serial femtosecond crystallography in the time range of 100 fs to 3 ms. This allowed for the real-time tracking of the trans-cis isomerization of the chromophore in photoactive yellow protein and the associated structural changes in the protein. Science, this issue p. 725 The trans-to-cis isomerization of a key chromophore is characterized on ultrafast time scales. A variety of organisms have evolved mechanisms to detect and respond to light, in which the response is mediated by protein structural changes after photon absorption. The initial step is often the photoisomerization of a conjugated chromophore. Isomerization occurs on ultrafast time scales and is substantially influenced by the chromophore environment. Here we identify structural changes associated with the earliest steps in the trans-to-cis isomerization of the chromophore in photoactive yellow protein. Femtosecond hard x-ray pulses emitted by the Linac Coherent Light Source were used to conduct time-resolved serial femtosecond crystallography on photoactive yellow protein microcrystals over a time range from 100 femtoseconds to 3 picoseconds to determine the structural dynamics of the photoisomerization reaction.


Nature | 2014

Asymmetries in core-collapse supernovae from maps of radioactive 44 Ti in Cassiopeia A

Brian W. Grefenstette; Fiona A. Harrison; S. E. Boggs; Stephen P. Reynolds; Christopher L. Fryer; K. K. Madsen; Daniel R. Wik; Andreas Zoglauer; C I Ellinger; D. M. Alexander; Hongjun An; Didier Barret; Finn Erland Christensen; William W. Craig; K. Forster; P. Giommi; C. J. Hailey; A. Hornstrup; V. M. Kaspi; Takao Kitaguchi; Jason E. Koglin; Peter H. Mao; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; M. Pivovaroff; S. Puccetti; V. Rana; D. Stern; Niels Jørgen Stenfeldt Westergaard

Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive 44Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium, directly probes the explosion asymmetries. Cassiopeia A is a young, nearby, core-collapse remnant from which 44Ti emission has previously been detected but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed 44Ti emission to estimated 56Ni emission, from optical light echoes, and from jet-like features seen in the X-ray and optical ejecta. Here we report spatial maps and spectral properties of the 44Ti in Cassiopeia A. This may explain the unexpected lack of correlation between the 44Ti and iron X-ray emission, the latter being visible only in shock-heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.

Collaboration


Dive into the Jason E. Koglin's collaboration.

Top Co-Authors

Avatar

Charles J. Hailey

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sébastien Boutet

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Finn Erland Christensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Fiona A. Harrison

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Garth J. Williams

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Pivovaroff

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kristin K. Madsen

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge