Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kayo Masuko is active.

Publication


Featured researches published by Kayo Masuko.


Arthritis Research & Therapy | 2006

Identification of novel citrullinated autoantigens of synovium in rheumatoid arthritis using a proteomic approach

Kosuke Matsuo; Yang Xiang; Hiroshi Nakamura; Kayo Masuko; Kazuo Yudoh; Koji Noyori; Kusuki Nishioka; Tomoyuki Saito; Tomohiro Kato

Recently, autoantibodies to some citrullinated autoantigens have been reported to be specific for rheumatoid arthritis (RA). However, an entire profile of and autoimmunity of the citrullinated proteins have been poorly understood. To understand the profile, we examined citrullinated autoantigens by a proteomic approach and further investigated the significance of citrullination in antigenicity of one of the autoantigens. Specifically, we detected citrullinated autoantigens in synovial tissue of a patient with RA by two-dimensional electrophoresis and Western blotting by using pooled sera from five patients with RA and anti-citrulline antibodies. After identifying the detected autoantigens by mass spectrometry, we investigated the contribution of citrullination to autoantigenicity by using a recombinant protein with or without citrullination on one of the identified novel citrullinated autoantigens. As a result, we found 51 citrullinated protein spots. Thirty (58.8%) of these spots were autoantigenic. We identified 13 out of the 30 detected citrullinated autoantigenic proteins. They contained three fibrinogen derivatives and several novel citrullinated autoantigens (for example, asporin and F-actin capping protein α-1 subunit [CapZα-1]). We further analyzed the contribution of citrullination to autoantigenicity in one of the detected citrullinated autoantigens, CapZα-1. As a result, frequencies of autoantibodies to non-citrullinated CapZα-1 were 36.7% in the RA group tested, 10.7% in the osteoarthritis (OA) group, and 6.5% in healthy donors. On the other hand, those to citrullinated CapZα-1 were 53.3% in the RA group, 7.1% in the OA group, and 6.5% in the healthy donors. This shows that autoantigenicity of citrullinated or non-citrullinated CapZα-1 is relevant to RA. The antibody titers to the citrullinated CapZα-1 were significantly higher than those to the non-citrullinated CapZα-1 in 36.7% of patients; however, the other patients showed almost equal antibody titers to both citrullinated and non-citrullinated CapZα-1. Therefore, the autoantibodies would target citrulline-related and/or citrulline-unrelated epitope(s) of CapZα-1. In conclusion, we report a profile of citrullinated autoantigens for the first time. Even though citrullination is closely related to autoantigenicity, citrullination would not always produce autoantigenicity in RA. Citrullinated and non-citrullinated autoantigens/autoepitopes would have different pathological roles in RA.


Arthritis Research & Therapy | 2009

Implication of granulocyte-macrophage colony-stimulating factor induced neutrophil gelatinase-associated lipocalin in pathogenesis of rheumatoid arthritis revealed by proteome analysis

Masayoshi Katano; Kazuki Okamoto; Mitsumi Arito; Yuki Kawakami; Manae S. Kurokawa; Naoya Suematsu; Sonoko Shimada; Hiroshi Nakamura; Yang Xiang; Kayo Masuko; Kusuki Nishioka; Kazuo Yudoh; Tomohiro Kato

IntroductionIn rheumatoid arthritis (RA), synovial fluid (SF) contains a large number of neutrophils that contribute to the inflammation and destruction of the joints. The SF also contains granulocyte-macrophage colony-stimulating factor (GM-CSF), which sustains viability of neutrophils and activates their functions. Using proteomic surveillance, we here tried to elucidate the effects of GM-CSF on neutrophils.MethodsNeutrophils stimulated by GM-CSF were divided into four subcellular fractions: cytosol, membrane/organelle, nuclei, and cytoskeleton. Then, proteins were extracted from each fraction and digested by trypsin. The produced peptides were detected using matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF MS).ResultsWe detected 33 peptide peaks whose expression was upregulated by more than 2.5-fold in GM-CSF stimulated neutrophils and identified 11 proteins out of the 33 peptides using MALDI-TOF/TOF MS analysis and protein database searches. One of the identified proteins was neutrophil gelatinase-associated lipocalin (NGAL). We confirmed that the level of NGAL in SF was significantly higher in patients with RA than in those with osteoarthritis. We next addressed possible roles of the increased NGAL in RA. We analysed proteome alteration of synoviocytes from patients with RA by treatment with NGAL in vitro. We found that, out of the detected protein spots (approximately 3,600 protein spots), the intensity of 21 protein spots increased by more than 1.5-fold and the intensity of 10 protein spots decreased by less than 1 to 1.5-fold as a result of the NGAL treatment. Among the 21 increased protein spots, we identified 9 proteins including transitional endoplasmic reticulum ATPase (TERA), cathepsin D, and transglutaminase 2 (TG2), which increased to 4.8-fold, 1.5-fold and 1.6-fold, respectively. Two-dimensional electrophoresis followed by western blot analysis confirmed the upregulation of TERA by the NGAL treatment and, moreover, the western blot analysis showed that the NGAL treatment changed the protein spots caused by post-translational modification of TERA. Furthermore, NGAL cancelled out the proliferative effects of fibroblast growth factor (FGF)-2 and epidermal growth factor (EGF) on chondrocytes from a patient with RA and proliferative effect of FGF-2 on chondrosarcoma cells.ConclusionsOur results indicate that GM-CSF contributes to the pathogenesis of RA through upregulation of NGAL in neutrophils, followed by induction of TERA, cathepsin D and TG2 in synoviocytes. NGAL and the upregulated enzymes may therefore play an important role in RA.


Journal of Orthopaedic Research | 2009

Hypoxia upregulates the expression of angiopoietin-like-4 in human articular chondrocytes: role of angiopoietin-like-4 in the expression of matrix metalloproteinases and cartilage degradation.

Minako Murata; Kazuo Yudo; Hiroshi Nakamura; Junji Chiba; Kazuki Okamoto; Naoya Suematsu; Kusuki Nishioka; Moroe Beppu; Kazuhiko Inoue; Tomohiro Kato; Kayo Masuko

The objective of this article was to investigate the role and expression of a novel adipocytokine, angiopoietin‐like‐4 (ANGPTL4), in arthropathy. Human chondrocytes were obtained from articular cartilage of patients with rheumatoid arthritis (RA) and osteoarthritis (OA), who underwent total knee or hip arthroplasty. Isolated chondrocytes were cultured under hypoxic (95% N2, 5% CO2) or normoxic conditions. The effects of hypoxia on ANGPTL4 expression were determined by real‐time reverse transcription polymerase chain reaction and Western blot analysis. We examined the role of ANGPTL4 using small interference RNA or by stimulating chondrocytes with recombinant ANGPTL4 protein. ANGPTL4 expression in the articular cartilage specimens was examined by immunohistochemistry. Hypoxia induced a significant increase in ANGPTL4 production (p < 0.05). Incubation of chondrocytes in vitro with recombinant ANGPTL4 enhanced the expression of matrix metalloproteinase (MMP)‐1 and MMP‐3. Downregulation of ANGPTL4 mRNA expression by siRNA diminished the expression of MMP‐1, but not that of MMP‐3, suggesting that each proteinase has a distinct response to ANGPTL4. Although the in vitro responses of chondrocytes to hypoxia were similar between RA and OA samples, the in vivo expression of ANGPTL4 had unique disease‐specific patterns, suggesting differences in oxygen tension in vivo. Human chondrocytes expressed ANGPTL4 and the expression was enhanced by hypoxia. ANGPTL4 might modulate cartilage metabolism by regulating MMPs.


International Journal of Nanomedicine | 2009

Water-soluble fullerene (C60) inhibits the development of arthritis in the rat model of arthritis.

Kazuo Yudoh; Rie Karasawa; Kayo Masuko; Tomohiro Kato

Recently, it has been demonstrated that oxygen free radicals have an important role as a signaling messenger in the development of inflammation and osteoclastogenesis, suggesting the implication of oxygen free radicals in the pathogenesis of arthritis. The aim of this study was to examine the potential of a strong free-radical scavenger, water-soluble fullerene (C60), as a protective agent against synovitis in arthritis, both in vitro and in vivo. In the presence or absence of C60 (0.1, 1.0, 10.0 μM), human synovial fibroblasts, synovial infiltrating lymphocytes or macrophages were incubated with tumor necrosis factor-α (TNF-α) (10.0 ng/mL), and the production of proinflammatory cytokines by the individual cells were analyzed. C60 significantly suppressed the TNF-α-induced production of proinflammatory cytokines in synovial fibroblasts, synovial infiltrating lymphocytes and macrophages in vitro. Adjuvant induced arthritic rats were used as an animal model of arthritis. Rats were divided into two subgroups: control and treatment with C60 at 10.0 μM. The left ankle joint was injected intraarticularly with water-soluble C60 (20 μl) in the C60-treated group, while, as a control, the left ankle joint in the control rats received phosphate-buffered saline (20 μl), once weekly for eight weeks. Ankle joint tissues were prepared for histological analysis. In adjuvant-induced arthritic rats, intra-articular treatment with C60 in vivo reduced synovitis and alleviated bone resorption and destruction in the joints, while control ankle joints showed progression of synovitis and joint destruction with time. These findings indicate that C60 is a potential therapeutic agent for inhibition of arthritis.


International Journal of General Medicine | 2009

Anti-inflammatory effects of hyaluronan in arthritis therapy: Not just for viscosity.

Kayo Masuko; Minako Murata; Kazuo Yudoh; Tomohiro Kato; Hiroshi Nakamura

Hyaluronic acid (HA) has been widely used for viscosupplementation of diseased or aged articular joints. However, recent investigations have revealed the active anti-inflammatory or chondroprotective effect of HA, suggesting its potential role in attenuation of joint damage. In particular, interactions between HA and other inflammatory mediators are attracting interest. This review summarizes several aspects of recent investigations of the anti-inflammatory effects of HA in arthritis.


Journal of Gastroenterology | 2010

Protein profiles of peripheral blood mononuclear cells are useful for differential diagnosis of ulcerative colitis and Crohn’s disease

Moriaki Hatsugai; Manae S. Kurokawa; Takefumi Kouro; Kohei Nagai; Mitsumi Arito; Kayo Masuko; Naoya Suematsu; Kazuki Okamoto; Fumio Itoh; Tomohiro Kato

BackgroundEffective biomarkers for discrimination between ulcerative colitis (UC) and Crohn’s disease (CD) have not been established yet. In this study, we analyzed protein profiles of peripheral blood mononuclear cells (PBMCs) of the patients to find such a biomarker.MethodsPeripheral blood mononuclear cell proteins from 17 UC patients, 13 CD patients, and 17 healthy controls were separated by two-dimensional gel electrophoresis. The intensities of individual protein spots were subjected to discriminant analysis of UC and CD using the SIMCA-P+program.ResultsWe found that 547 protein spots were commonly detected among the UC, CD, and healthy groups. Orthogonal partial least squares-discriminant analysis using 276 protein spots clearly discriminated the UC patients from the CD patients (R2 0.994; Q2 0.462). A similar analysis using a further selected 58 protein spots showed higher performance for discrimination of the diseases (R2 0.948; Q2 0.566). Eleven out of the 58 protein spots were successfully identified; these were functionally related to inflammation, oxidation/reduction, the cytoskeleton, endocytotic trafficking, and transcription. In addition, the PBMC protein profiles were useful for the prediction of disease activity in the UC and the CD patients, and they were also useful for predicting disease severity and responses to treatments in the UC patients.ConclusionsPBMC protein profiles are useful for the discrimination of UC from CD. The profiles could be a potent biomarker for the differential diagnosis of these diseases. Further investigation of the proteins which contributed to the discrimination could promote elucidation of the pathophysiology of UC and CD.


BMC Musculoskeletal Disorders | 2007

Sphingosine-1-phosphate attenuates proteoglycan aggrecan expression via production of prostaglandin E2 from human articular chondrocytes

Kayo Masuko; Minako Murata; Hiroshi Nakamura; Kazuo Yudoh; Kusuki Nishioka; Tomohiro Kato

BackgroundSphingosine-1-phosphate (S1P), a downstream metabolite of ceramide, induces various bioactivities via two distinct pathways: as an intracellular second messenger or through receptor activation. The receptor for S1P (S1PR) is the family of Endothelial differentiation, sphingolipid G-protein-coupled receptor (EDG). We have here attempted to reveal the expression of EDG/S1PR in human articular chondrocytes (HAC), exploring the implications of S1P in cartilage degradation.MethodsArticular cartilage specimens were obtained from patients with rheumatoid arthritis (RA), osteoarthritis (OA) or traumatic fracture (representing normal chondrocytes) who underwent joint surgery. Isolated HAC were cultured in vitro by monolayer and stimulated with S1P in the presence or absence of inhibitors of signaling molecules. Stimulated cells and culture supernatants were collected and subjected to analyses using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA).ResultsAll of the tested HAC samples showed positive results in terms of EDG/S1PR expression in basal condition. When HAC was stimulated with S1P, a significant increase in prostaglandin (PG) E2 production was observed together with enhanced expression of cyclooxygenase (COX)-2. S1P stimulated extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) in HAC, and the PGE2 induction was abrogated by PD98059 and SB203580. Pertussis toxin inhibited the PGE2 induction from HAC by S1P, suggesting an essential role for Gi protein. S1P also attenuated the expression of proteoglycan aggrecan, a component of cartilage matrix, in HAC at transcriptional level.ConclusionIt was suggested that the S1P-induced PGE2 was at least in part involved in the aggrecan-suppressing effect of S1P, seeing as COX inhibitors attenuated the effect. Accordingly, S1P might play an important role in cartilage degradation in arthritides.


Clinical and Experimental Immunology | 2010

Peroxiredoxin 2 is a novel autoantigen for anti‐endothelial cell antibodies in systemic vasculitis

Rie Karasawa; Manae S. Kurokawa; Yudoh K; Kayo Masuko; Shoichi Ozaki; Tomohiro Kato

Anti‐endothelial cell antibodies (AECA) have been frequently detected in systemic vasculitis, which affects blood vessels of various sizes. To understand the pathogenic roles of AECA in systemic vasculitis, we attempted to identify target antigens for AECA comprehensively by a proteomic approach. Proteins extracted from human umbilical vein endothelial cells (HUVEC) were separated by two‐dimensional electrophoresis, and Western blotting was subsequently conducted using sera from patients with systemic vasculitis. As a result, 53 autoantigenic protein spots for AECA were detected, nine of which were identified by mass spectrometry. One of the identified proteins was peroxiredoxin 2 (Prx2), an anti‐oxidant enzyme. Frequency of anti‐Prx2 autoantibodies, measured by enzyme‐linked immunosorbent assay (ELISA), was significantly higher in systemic vasculitis (60%) compared to those in collagen diseases without clinical vasculitis (7%, P < 0·01) and healthy individuals (0%, P < 0·01). Further, the titres changed in parallel with the disease activity during time–courses. The presence of anti‐Prx2 autoantibodies correlated significantly with elevation of serum d‐dimers and thrombin–antithrombin complex (P < 0·05). Immunocytochemical analysis revealed that live endothelial cells expressed Prx2 on their surface. Interestingly, stimulation of HUVEC with rabbit anti‐Prx2 antibodies increased secretion of interleukin (IL)‐6, IL‐1β, IL‐1ra, growth regulated oncogene (GRO)‐α, granulocyte colony‐stimulating factor (G‐CSF), granulocyte macrophage colony‐stimulating factor (GM–CSF), IL‐8 and monocyte chemoattractant protein (MCP)‐1 more than twofold compared to that of with rabbit immunoglobulin (Ig)G. Taken together, our data suggest that anti‐Prx2 autoantibodies would be a useful marker for systemic vasculitis and would be involved in the inflammatory processes of systemic vasculitis.


Frontiers in Nutrition | 2014

Rheumatoid cachexia revisited: a metabolic co-morbidity in rheumatoid arthritis

Kayo Masuko

Rheumatoid arthritis (RA) is a chronic inflammatory disease in which pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, play a crucial role. The chronic inflammation, combined with reduced physical activity, leads to muscle wasting whereas fat mass would be maintained; the resulting abnormal metabolic state is described as rheumatoid cachexia. Since the loss of muscle volume would be compensated by the increased fat mass, body mass index (BMI) is reported not to reflect the nutritional status in RA patients. The implication of rheumatoid cachexia for cardiovascular risk and clinical prognosis is not clearly understood, however, adequate control of disease activity in combination with appropriate physical exercise could be the most important strategy to control rheumatoid cachexia and related metabolic problems.


Proteomics | 2008

Involvement of post-translational modification of neuronal plasticity-related proteins in hyperalgesia revealed by a proteomic analysis

Hiroki Fujisawa; Ritsuko Ohtani-Kaneko; Mitsuru Naiki; Tomoyuki Okada; Kayo Masuko; Kazuo Yudoh; Naoya Suematsu; Kazuki Okamoto; Kusuki Nishioka; Tomohiro Kato

To clarify roles of an endogenous pain modulatory system of the central nervous system (CNS) in hyperalgesia, we tried to identify qualitative and quantitative protein changes by a proteomic analysis using an animal model of hyperalgesia. Specifically, we first induced functional hyperalgesia on male Wistar rats by repeated cold stress (specific alternation of rhythm in temperature, SART). We then compared proteomes of multiple regions of CNS and the dorsal root ganglion between the hyperalgetic rats and non‐treated ones by 2‐D PAGE in the pI range of 4.0–7.0. We found that SART changed the proteomes prominently in the mesencephalon and cerebellum. We thus analyzed the two brain regions in more detail using gels with narrower pI ranges. As a result, 29 and 23 protein spots were significantly changed in the mesencephalon and the cerebellum, respectively. We successfully identified 12 protein spots by a MALDI‐TOF/TOF MS and subsequent protein database searching. They included unc‐18 protein homolog 67K, collapsin response mediator protein (CRMP)‐2 and CRMP‐4, which were reported to be involved in neurotransmitter release or axon elongation. Interestingly, mRNA expression levels of these three proteins were not changed significantly by the induction of hyperalgesia. Instead, we found that the detected changes in the protein spots are caused by the post‐translational modification (PTM) of proteolysis or phosphorylation. Taken together, development of the hyperalgesia would be linked to PTM of these three CNS proteins. PTM regulation may be one of the useful ways to treat hyperalgesia.

Collaboration


Dive into the Kayo Masuko's collaboration.

Top Co-Authors

Avatar

Tomohiro Kato

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuo Yudoh

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kusuki Nishioka

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kazuki Okamoto

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Naoya Suematsu

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Minako Murata

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kazuhiko Yamamoto

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Manae S. Kurokawa

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Moroe Beppu

St. Marianna University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge