Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kayo Yamada is active.

Publication


Featured researches published by Kayo Yamada.


Nature Cell Biology | 2009

Cell fate decisions are specified by the dynamic ERK interactome.

Alex von Kriegsheim; Daniela Baiocchi; Marc R. Birtwistle; David Sumpton; Willy Bienvenut; Nicholas A. Morrice; Kayo Yamada; Angus I. Lamond; Gabriella Kalna; Richard J. Orton; David R. Gilbert; Walter Kolch

Extracellular signal-regulated kinase (ERK) controls fundamental cellular functions, including cell fate decisions. In PC12, cells shifting ERK activation from transient to sustained induces neuronal differentiation. As ERK associates with both regulators and effectors, we hypothesized that the mechanisms underlying the switch could be revealed by assessing the dynamic changes in ERK-interacting proteins that specifically occur under differentiation conditions. Using quantitative proteomics, we identified 284 ERK-interacting proteins. Upon induction of differentiation, 60 proteins changed their binding to ERK, including many proteins that were not known to participate in differentiation. We functionally characterized a subset, showing that they regulate the pathway at several levels and by different mechanisms, including signal duration, ERK localization, feedback, crosstalk with the Akt pathway and differential interaction and phosphorylation of transcription factors. Integrating these data with a mathematical model confirmed that ERK dynamics and differentiation are regulated by distributed control mechanisms rather than by a single master switch.


Nucleic Acids Research | 2011

Identification of human miRNA precursors that resemble box C/D snoRNAs

Motoharu Ono; Michelle S. Scott; Kayo Yamada; Fabio Avolio; Geoffrey J. Barton; Angus I. Lamond

There are two main classes of small nucleolar RNAs (snoRNAs): the box C/D snoRNAs and the box H/ACA snoRNAs that function as guide RNAs to direct sequence-specific modification of rRNA precursors and other nucleolar RNA targets. A previous computational and biochemical analysis revealed a possible evolutionary relationship between miRNA precursors and some box H/ACA snoRNAs. Here, we investigate a similar evolutionary relationship between a subset of miRNA precursors and box C/D snoRNAs. Computational analyses identified 84 intronic miRNAs that are encoded within either box C/D snoRNAs, or in precursors showing similarity to box C/D snoRNAs. Predictions of the folded structures of these box C/D snoRNA-like miRNA precursors resemble the structures of known box C/D snoRNAs, with the boxes C and D often in close proximity in the folded molecule. All five box C/D snoRNA-like miRNA precursors tested (miR-27b, miR-16-1, mir-28, miR-31 and let-7g) bind to fibrillarin, a specific protein component of functional box C/D snoRNP complexes. The data suggest that a subset of small regulatory RNAs may have evolved from box C/D snoRNAs.


Molecular Biology of the Cell | 2010

Analysis of Human Small Nucleolar RNAs (snoRNA) and the Development of snoRNA Modulator of Gene Expression Vectors

Motoharu Ono; Kayo Yamada; Fabio Avolio; Michelle S. Scott; Silvana van Koningsbruggen; Geoffrey J. Barton; Angus I. Lamond

In this manuscript we describe the characterisation of human snoRNAs that co-purify with nucleoli and develop a new vector based system for targeted gene knock down. We demonstrate that this novel vector system (snoMEN) can deliver effective, sequence-specific knock down of endogenous cellular genes as well as GFP and GFP-fusion proteins.


Molecular Cell | 2013

Identification and Functional Characterization of FMN2, a Regulator of the Cyclin-Dependent Kinase Inhibitor p21

Kayo Yamada; Motoharu Ono; Neil D. Perkins; Sonia Rocha; Angus I. Lamond

Summary The ARF tumor suppressor is a central component of the cellular defense against oncogene activation in mammals. p14ARF activates p53 by binding and inhibiting HDM2, resulting, inter alia, in increased transcription and expression of the cyclin-dependent kinase inhibitor p21 and consequent cell-cycle arrest. We analyzed the effect of p14ARF induction on nucleolar protein dynamics using SILAC mass spectrometry and have identified the human Formin-2 (FMN2) protein as a component of the p14ARF tumor suppressor pathway. We show that FMN2 is increased upon p14ARF induction at both the mRNA and the protein level via a NF-κB-dependent mechanism that is independent of p53. FMN2 enhances expression of the cell-cycle inhibitor p21 by preventing its degradation. FMN2 is also induced by activation of other oncogenes, hypoxia, and DNA damage. These results identify FMN2 as a crucial component in the regulation of p21 and consequent oncogene/stress-induced cell-cycle arrest in human cells.


PLOS ONE | 2015

Targeted Knock-Down of miR21 Primary Transcripts Using snoMEN Vectors Induces Apoptosis in Human Cancer Cell Lines

Motoharu Ono; Kayo Yamada; Fabio Avolio; Vackar Afzal; Dalila Bensaddek; Angus I. Lamond

We have previously reported an antisense technology, ‘snoMEN vectors’, for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2.


Cell Cycle | 2013

FMN2 is a novel regulator of the cyclin-dependent kinase inhibitor p21

Kayo Yamada; Motoharu Ono; Dalila Bensaddek; Angus I. Lamond; Sonia Rocha

We have identified the human FMN2 gene as a novel target regulated by induction of p14ARF and by multiple other stress responses, including DNA damage and hypoxia, which have in common activation of cell cycle arrest. We showed that increased expression of the FMN2 gene following p14ARF induction is caused, at the transcriptional level, by relief of repression by RelA and E2F1, which, under non-induced conditions, bind the FMN2 promoter. Increased FMN2 protein levels promote cell cycle arrest by inhibiting the degradation of p21, and our data show that control of p21 stability is a key part of the mechanism that regulates p21 induction. Consistent with this model, we have shown that transient expression of exogenous FMN2 protein alone is sufficient to increase p21 protein levels in cells, without altering p21 mRNA levels. Here, we provide additional evidence for the role of the N terminus of FMN2 as being the important domain required for p21 stability. In addition, we also investigate the role of RelA’s threonine 505 residue in the control of FMN2. Our results identify FMN2 as a crucial protein involved in the control of p21.


PLOS ONE | 2013

Analysis of Human Protein Replacement Stable Cell Lines Established using snoMEN-PR Vector

Motoharu Ono; Kayo Yamada; Akinori Endo; Fabio Avolio; Angus I. Lamond

The study of the function of many human proteins is often hampered by technical limitations, such as cytotoxicity and phenotypes that result from overexpression of the protein of interest together with the endogenous version. Here we present the snoMEN (snoRNA Modulator of gene ExpressioN) vector technology for generating stable cell lines where expression of the endogenous protein can be reduced and replaced by an exogenous protein, such as a fluorescent protein (FP)-tagged version. SnoMEN are snoRNAs engineered to contain complementary sequences that can promote knock-down of targeted RNAs. We have established and characterised two such partial protein replacement human cell lines (snoMEN-PR). Quantitative mass spectrometry was used to analyse the specificity of knock-down and replacement at the protein level and also showed an increased pull-down efficiency of protein complexes containing exogenous, tagged proteins in the protein replacement cell lines, as compared with conventional co-expression strategies. The snoMEN approach facilitates the study of mammalian proteins, particularly those that have so far been difficult to investigate by exogenous expression and has wide applications in basic and applied gene-expression research.


PLOS ONE | 2016

Enhanced snoMEN Vectors Facilitate Establishment of GFP-HIF-1α Protein Replacement Human Cell Lines.

Motoharu Ono; Kayo Yamada; Dalila Bensaddek; Vackar Afzal; John Biddlestone; Brian Ortmann; Sharon Mudie; Vincent Boivin; Michelle S. Scott; Sonia Rocha; Angus I. Lamond

The snoMEN (snoRNA Modulator of gene ExpressioN) vector technology was developed from a human box C/D snoRNA, HBII-180C, which contains an internal sequence that can be manipulated to make it complementary to RNA targets, allowing knock-down of targeted genes. Here we have screened additional human nucleolar snoRNAs and assessed their application for gene specific knock-downs to improve the efficiency of snoMEN vectors. We identify and characterise a new snoMEN vector, termed 47snoMEN, that is derived from box C/D snoRNA U47, demonstrating its use for knock-down of both endogenous cellular proteins and G/YFP-fusion proteins. Using multiplex 47snoMEM vectors that co-express multiple 47snoMEN in a single transcript, each of which can target different sites in the same mRNA, we document >3-fold increase in knock-down efficiency when compared with the original HBII-180C based snoMEN. The multiplex 47snoMEM vector allowed the construction of human protein replacement cell lines with improved efficiency, including the establishment of novel GFP–HIF-1α replacement cells. Quantitative mass spectrometry analysis confirmed the enhanced efficiency and specificity of protein replacement using the 47snoMEN-PR vectors. The 47snoMEN vectors expand the potential applications for snoMEN technology in gene expression studies, target validation and gene therapy.


Nucleic Acids Research | 2012

Human box C/D snoRNA processing conservation across multiple cell types

Michelle S. Scott; Motoharu Ono; Kayo Yamada; Akinori Endo; Geoffrey J. Barton; Angus I. Lamond


Archive | 2010

DIAGNOSIS AND TREATMENT OF CELL PROLIFERATION AND DIFFERENTIATION DISORDERS BASED ON THE FMN2 GENE

Sonia Rocha; Angus Lain Lamond; Motoharu Ono; Kayo Yamada

Collaboration


Dive into the Kayo Yamada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge