Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuhide Yahata is active.

Publication


Featured researches published by Kazuhide Yahata.


Nature | 2008

Cohesin mediates transcriptional insulation by CCCTC-binding factor

Kerstin S. Wendt; Keisuke Yoshida; Takehiko Itoh; Masashige Bando; Birgit Koch; Erika Schirghuber; Shuichi Tsutsumi; Genta Nagae; Ko Ishihara; Tsuyoshi Mishiro; Kazuhide Yahata; Fumio Imamoto; Hiroyuki Aburatani; Mitsuyoshi Nakao; Naoko Imamoto; Kazuhiro Maeshima; Katsuhiko Shirahige; Jan-Michael Peters

Cohesin complexes mediate sister-chromatid cohesion in dividing cells but may also contribute to gene regulation in postmitotic cells. How cohesin regulates gene expression is not known. Here we describe cohesin-binding sites in the human genome and show that most of these are associated with the CCCTC-binding factor (CTCF), a zinc-finger protein required for transcriptional insulation. CTCF is dispensable for cohesin loading onto DNA, but is needed to enrich cohesin at specific binding sites. Cohesin enables CTCF to insulate promoters from distant enhancers and controls transcription at the H19/IGF2 (insulin-like growth factor 2) locus. This role of cohesin seems to be independent of its role in cohesion. We propose that cohesin functions as a transcriptional insulator, and speculate that subtle deficiencies in this function contribute to ‘cohesinopathies’ such as Cornelia de Lange syndrome.


FEBS Letters | 2007

Two distinct human POM121 genes: Requirement for the formation of nuclear pore complexes

Tomoko Funakoshi; Kazuhiro Maeshima; Kazuhide Yahata; Sumio Sugano; Fumio Imamoto; Naoko Imamoto

Pom121 is one of the integral membrane components of the nuclear pore complex (NPC) in vertebrate cells. Unlike rodent cells carrying a single POM121 gene, human cells possess multiple POM121 gene loci on chromosome 7q11.23, as a consequence of complex segmental‐duplications in this region during human evolution. In HeLa cells, two “full‐length” Pom121 are transcribed and translated by two distinct genetic loci. RNAi experiments showed that efficient depletion of both Pom121 proteins significantly reduces assembled NPCs on nuclear envelope. Pom121‐depletion also induced clustering of NPCs, indicating its role on maintenance of NPC structure/organization.


Journal of Biotechnology | 2005

Multi-gene gateway clone design for expression of multiple heterologous genes in living cells: eukaryotic clones containing two and three ORF multi-gene cassettes expressed from a single promoter.

Yukari Sasaki; Takefumi Sone; Kazuhide Yahata; Hiroe Kishine; Junko Hotta; Jonathan D. Chesnut; Takeshi Honda; Fumio Imamoto

Two types of eukaryotic operon-type Expression clones were constructed using the Multisite Gateway system employing six types of att signals. These clones harbored a DNA cassette containing two heterologous ORFs (cDNAs) or three heterologous ORFs in tandem downstream of a single promoter. The most promoter-proximal ORF was translated via a Kozak signal and the downstream one or two ORF(s) were translated as directed by internal ribosome entry site(s) (IRES). These clones were observed to produce two or three different proteins at levels that depended on the activities of the translational initiation signals used. With the intention of modulating the expression level of the first ORF, the translational initiation signals including a Kozak sequence and 11 different IRESs were investigated for their efficiency using a single ORF. The translational activity of these signals varied within a 10-fold magnitude. Using these results, expression at pre-described relative levels was achieved from the optional IRES of the respective ORFs in the cassette. Controllable expression at desired levels of two different ORFs directed by optional IRESs on a bicistronic construct, transcribed from a single promoter, was demonstrated.


Parasitology International | 2011

PEXEL-independent trafficking of Plasmodium falciparum SURFIN4.2 to the parasite-infected red blood cell and Maurer's clefts

Jean Semé Fils Alexandre; Kazuhide Yahata; Satoru Kawai; Motomi Torii; Osamu Kaneko

SURFIN(4.2) is a parasite-infected red blood cell (iRBC) surface associated protein of Plasmodium falciparum. To analyze the region responsible for the intracellular trafficking of SURFIN(4.2) to the iRBC and Maurers clefts, a panel of transgenic parasite lines expressing recombinant SURFIN(4.2) fused with green fluorescent protein was generated and evaluated for their localization. We found that the cytoplasmic region containing a tryptophan rich (WR) domain is not necessary for trafficking, whereas the transmembrane (TM) region was. Two PEXEL-like sequences were shown not to be responsible for the trafficking of SURFIN(4.2), demonstrating that the protein is trafficked in a PEXEL-independent manner. N-terminal replacement, deletion of the cysteine-rich domain or the variable region also did not prevent the protein from localizing at the iRBC or Maurers clefts. A recombinant SURFIN(4.2) protein possessing 50 amino acids upstream of the TM region, TM region itself and a part of the cytoplasmic region was shown to be trafficked into the iRBC and Maurers clefts, suggesting that there are no essential trafficking motifs in the SURFIN(4.2) extracellular region. A mini-SURFIN(4.2) protein containing WR domain was shown by Western blotting to be more abundantly detected in a Triton X-100-insoluble fraction, compared to the one without WR domain. We suggest that the cytoplasmic region containing the WR may be responsible for their difference in solubility.


PLOS ONE | 2015

Transfection of Babesia bovis by Double Selection with WR99210 and Blasticidin-S and Its Application for Functional Analysis of Thioredoxin Peroxidase-1

Masahito Asada; Kazuhide Yahata; Hassan Hakimi; Naoaki Yokoyama; Ikuo Igarashi; Osamu Kaneko; Carlos E. Suarez; Shin-ichiro Kawazu

Genetic manipulation is an essential technique to analyze gene function; however, limited methods are available for Babesia bovis, a causative pathogen of the globally important cattle disease, bovine babesiosis. To date, two stable transfection systems have been developed for B. bovis, using selectable markers blasticidin-S deaminase (bsd) or human dihydrofolate reductase (hdhfr). In this work, we combine these two selectable markers in a sequential transfection system. Specifically, a parent transgenic B. bovis line which episomally expresses green fluorescent protein (GFP) and human dihydrofolate reductase (hDHFR), was transfected with a plasmid encoding a fusion protein consisting of red fluorescent protein (RFP) and blasticidin-S deaminase (BSD). Selection with WR99210 and blasticidin-S resulted in the emergence of parasites double positive for GFP and RFP. We then applied this method to complement gene function in a parasite line in which thioredoxin peroxidase-1 (Bbtpx-1) gene was knocked out using hDHFR as a selectable marker. A plasmid was constructed harboring both RFP-BSD and Bbtpx-1 expression cassettes, and transfected into a Bbtpx-1 knockout (KO) parasite. Transfectants were independently obtained by two transfection methods, episomal transfection and genome integration. Complementation of Bbtpx-1 resulted in full recovery of resistance to nitrosative stress, via the nitric oxide donor sodium nitroprusside, which was impaired in the Bbtpx-1 KO parasites. In conclusion, we developed a sequential transfection method in B. bovis and subsequently applied this technique in a gene complementation study. This method will enable broader genetic manipulation of Babesia toward enhancing our understanding of the biology of this parasite.


Parasitology International | 2012

Stable allele frequency distribution of the polymorphic region of SURFIN4.2 in Plasmodium falciparum isolates from Thailand

Morakot Kaewthamasorn; Kazuhide Yahata; Jean Semé Fils Alexandre; Phonepadith Xangsayarath; Shusuke Nakazawa; Motomi Torii; Jetsumon Sattabongkot; Rachanee Udomsangpetch; Osamu Kaneko

Plasmodium falciparum SURFIN₄.₂ (PFD1160w) is a polymorphic protein expressed on the surface of parasite-infected erythrocytes. Such molecules are expected to be under strong host immune pressure, thus we analyzed the nucleotide diversity of the N-terminal extracellular region of SURFIN₄.₂ using P. falciparum isolates obtained from a malaria hypoendemic area of Thailand. The extracellular region of SURFIN₄.₂ was divided into four regions based on the amino acid sequence conservation among SURFIN members and the level of polymorphism among SURFIN₄.₂ sequences; N-terminal segment (Nter), a cysteine-rich domain (CRD), a variable region 1 (Var1), and a variable region 2 (Var2). Comparison between synonymous and non-synonymous substitutions, Tajimas D test, and Fu and Lis D* and F* tests detected signatures of positive selection on Var2 and to a lesser extent Var1, suggesting that these regions were likely under host immune pressure. Strong linkage disequilibrium was detected for nucleotide pairs separated by a distance of more than 1.5 kb, and 7 alleles among 19 alleles detected in 1988-1989 still circulated 14 years later, suggesting low recombination of the analyzed surf₄.₂ sequence region in Thailand. The allele frequency distribution of polymorphic areas in Var2 did not differ between two groups collected in different time points, suggesting the allele frequency distribution of this region was stable for 14 years. The observed allele frequency distribution of SURFIN₄.₂ Var2 may be fixed in Thai P. falciparum population as similar to the observation for P. falciparum merozoite surface protein 1, for which a stable allele frequency distribution was reported.


Tropical Medicine and Health | 2011

Positive selection on the Plasmodium falciparum clag2 gene encoding a component of the erythrocyte-binding rhoptry protein complex.

Jean Sf Alexandre; Morakot Kaewthamasorn; Kazuhide Yahata; Shusuke Nakazawa; Osamu Kaneko

A protein complex of high-molecular-mass proteins (PfRhopH) of the human malaria parasite Plasmodium falciparum induces host protective immunity and therefore is a candidate for vaccine development. Clarification of the level of polymorphism and the evolutionary processes is important both for vaccine design and for a better understanding of the evolution of cell invasion in this parasite. In a previous study on 5 genes encoding RhopH1/Clag proteins, positive diversifying selection was detected in clag8 and clag9 but not in the paralogous clag2, clag3.1 and clag3.2. In this study, to extend the analysis of clag polymorphism, we obtained sequences surrounding the most polymorphic regions of clag2, clag8, and clag9 from parasites collected in Thailand. Using sequence data obtained newly in this study and reported previously, we classified clag2 sequences into 5 groups based on the similarity of the deduced amino acid sequences and number of insertions/deletions. By the sliding window method, an excess of nonsynonymous substitutions over synonymous substitutions was detected in the group 1 and group 2 clag2 and clag8 sequences. Population-based analyses also detected a significant departure from the neutral expectation for group 1 clag2 and clag8. Thus, two independent approaches suggest that clag2 is subject to a positive diversifying selection. The previously suggested positive selection on clag8 was also supported by population-based analyses. However, the positive selection on clag9, which was detected by comparing the 5 sequences, was not detected using the additional 34 sequences obtained in this study.


Tropical Medicine and Health | 2012

Stable Allele Frequency Distribution of the Plasmodium falciparum clag Genes Encoding Components of the High Molecular Weight Rhoptry Protein Complex

Jean Semé Fils Alexandre; Phonepadith Xangsayarath; Morakot Kaewthamasorn; Kazuhide Yahata; Jetsumon Sattabongkot; Rachanee Udomsangpetch; Osamu Kaneko

Plasmodium falciparum Clag protein is a candidate component of the plasmodial surface anion channel located on the parasite-infected erythrocyte. This protein is encoded by 5 separated clag genes and forms a RhopH complex with the other components. Previously, a signature of positive diversifying selection was detected on the hypervariable region of clag2 and clag8 by population-based analyses using P. falciparum originating from Thailand in 1988–1989. In this study, we obtained the sequence of this region of 3 clag genes (clag2, clag8, and clag9) in 2005 and evaluated the changes over time in the frequency distribution of the polymorphism of these gene products by comparison with the sequences obtained in 1988–1989. We found no difference in the frequency distribution of 18 putatively neutral loci between the 2 groups, evidence that the background of the parasite population structure has remained stable over 14 years. Although the frequency distribution of most of the polymorphic sites in the hypervariable region of Clag2, Clag8, and Clag9 was stable over 14 years, we found that a proportion of the major Clag2 group and one amino acid position of Clag8 changed significantly. This may be a response to a certain type of pressure.


Scientific Reports | 2015

Novel hemagglutinating, hemolytic and cytotoxic activities of the intermediate subunit of Entamoeba histolytica lectin

Kentaro Kato; Kazuhide Yahata; Bhim Gopal Dhoubhadel; Yoshito Fujii; Hiroshi Tachibana

Galactose and N-acetyl-D-galactosamine (Gal/GalNAc) inhibitable lectin of Entamoeba histolytica, a common protozoan parasite, has roles in pathogenicity and induction of protective immunity in mouse models of amoebiasis. The lectin consists of heavy (Hgl), light (Lgl), and intermediate (Igl) subunits. Hgl has lectin activity and Lgl does not, but little is known about the activity of Igl. In this study, we assessed various regions of Igl for hemagglutinating activity using recombinant proteins expressed in Escherichia coli. We identified a weak hemagglutinating activity of the protein. Furthermore, we found novel hemolytic and cytotoxic activities of the lectin, which resided in the carboxy-terminal region of the protein. Antibodies against Igl inhibited the hemolytic activity of Entamoeba histolytica trophozoites. This is the first report showing hemagglutinating, hemolytic and cytotoxic activities of an amoebic molecule, Igl.


Scientific Reports | 2016

Ca2+ monitoring in Plasmodium falciparum using the yellow cameleon-Nano biosensor

Kishor Pandey; Pedro Eduardo Ferreira; Takeshi Ishikawa; Takeharu Nagai; Osamu Kaneko; Kazuhide Yahata

Calcium (Ca2+)-mediated signaling is a conserved mechanism in eukaryotes, including the human malaria parasite, Plasmodium falciparum. Due to its small size (<10 μm) measurement of intracellular Ca2+ in Plasmodium is technically challenging, and thus Ca2+ regulation in this human pathogen is not well understood. Here we analyze Ca2+ homeostasis via a new approach using transgenic P. falciparum expressing the Ca2+ sensor yellow cameleon (YC)-Nano. We found that cytosolic Ca2+ concentration is maintained at low levels only during the intraerythrocytic trophozoite stage (30 nM), and is increased in the other blood stages (>300 nM). We determined that the mammalian SERCA inhibitor thapsigargin and antimalarial dihydroartemisinin did not perturb SERCA activity. The change of the cytosolic Ca2+ level in P. falciparum was additionally detectable by flow cytometry. Thus, we propose that the developed YC-Nano-based system is useful to study Ca2+ signaling in P. falciparum and is applicable for drug screening.

Collaboration


Dive into the Kazuhide Yahata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhiro Maeshima

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Naoko Imamoto

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge