Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuhiko Nishitani is active.

Publication


Featured researches published by Kazuhiko Nishitani.


The EMBO Journal | 2002

The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation

Gyung-Tae Kim; Keiko Shoda; Tomohiko Tsuge; Kiu-Hyung Cho; Hirofumi Uchimiya; Ryusuke Yokoyama; Kazuhiko Nishitani; Hirokazu Tsukaya

We previously showed that the ANGUSTIFOLIA (AN) gene regulates the width of leaves of Arabidopsis thaliana, by controlling the polar elongation of leaf cells. In the present study, we found that the abnormal arrangement of cortical microtubules (MTs) in an leaf cells appeared to account entirely for the abnormal shape of the cells. It suggested that the AN gene might regulate the polarity of cell growth by controlling the arrangement of cortical MTs. We cloned the AN gene using a map‐based strategy and identified it as the first member of the CtBP family to be found in plants. Wild‐type AN cDNA reversed the narrow‐leaved phenotype and the abnormal arrangement of cortical MTs of the an‐1 mutation. In the animal kingdom, CtBPs self‐associate and act as co‐repressors of transcription. The AN protein can also self‐associate in the yeast two‐hybrid system. Furthermore, microarray analysis suggested that the AN gene might regulate the expression of certain genes, e.g. the gene involved in formation of cell walls, MERI5. A discussion of the molecular mechanisms involved in the leaf shape regulation is presented based on our observations.


International Review of Cytology-a Survey of Cell Biology | 1997

The role of endoxyloglucan transferase in the organization of plant cell walls

Kazuhiko Nishitani

The plant cell wall plays a central role in morphogenesis as well as responsiveness to environmental signals. Xyloglucans are the principal component of the plant cell wall matrix and serve as cross-links between cellulose microfibrils to form the cellulose-xyloglucan framework. Endoxyloglucan transferase (EXGT), which was isolated and characterized in 1992, is an enzyme that mediates molecular grafting reaction between xyloglucan molecules. Structural studies on cDNAs encoding EXGT and its related proteins have disclosed the ubiquitous presence in the plant kingdom of a large multigene family of xyloglucan-related proteins (XRPs). Each XRP functions as either hydrolase or transferase acting on xyloglucans and is considered to be responsible for rearrangement of the cellulose-xyloglucan framework, the processes essential for the construction, modification, and degradation of plant cell walls. Different XRP genes exhibit potentially different expression profiles with respect to tissue specificity and responsiveness to hormonal and mechanical signals. The molecular approach to individual XRP genes will open a new path for exploring the controlling mechanisms by which the plant cell wall is constructed and reformed during plant growth and development.


Plant Physiology | 2004

A Surprising Diversity and Abundance of Xyloglucan Endotransglucosylase/Hydrolases in Rice. Classification and Expression Analysis

Ryusuke Yokoyama; Jocelyn K. C. Rose; Kazuhiko Nishitani

A search of the recently completed genomic database of rice (Oryza sativa) identified a 29-member xyloglucan endotransglucosylase/hydrolase (OsXTH) gene family. This first report of a complete XTH family from a monocotyledonous species reveals that the OsXTH family is comparable in size with that of the dicotyledon Arabidopsis thaliana, which consists of 33 AtXTH genes. This is surprising because xyloglucan, the specific substrate of XTHs, is considerably less abundant in cell walls of monocotyledons than dicotyledons and is not typically ascribed an important structural role in monocotyledons. As a first step toward determining the roles of rice XTHs, the expression patterns of all 29 OsXTH genes were examined using a quantitative DNA microarray procedure with gene-specific oligonucleotide probes. The analysis showed that most members of the rice XTH family exhibited organ- and growth stage-specific expression. This was confirmed by quantitative real-time reverse transcriptase-polymerase chain reaction analysis of representative OsXTH members. This revealed in more detail the temporally and spatially controlled expression profiles of individual OsXTH genes at particular sites in rice. Previous reports indicated that grasses have relatively greater xyloglucan endotransglucosylase activities, one of the two enzyme activities catalyzed by XTHs, than in equivalent tissues in dicotyledons. This observation, together with the tissue-specific and growth stage-dependent expression of a large rice XTH gene family, suggests that xyloglucan metabolism plays a more central role in monocotyledon cell wall restructuring than has been reported previously.


Plant Physiology | 2005

KaPPA-View. A Web-Based Analysis Tool for Integration of Transcript and Metabolite Data on Plant Metabolic Pathway Maps

Toshiaki Tokimatsu; Nozomu Sakurai; Hideyuki Suzuki; Hiroyuki Ohta; Kazuhiko Nishitani; Tanetoshi Koyama; Toshiaki Umezawa; Norihiko Misawa; Kazuki Saito; Daisuke Shibata

The application of DNA array technology and chromatographic separation techniques coupled with mass spectrometry to transcriptomic and metabolomic analyses in plants has resulted in the generation of considerable quantitative data related to transcription and metabolism. The integration of “omic” data is one of the major concerns associated with research into identifying gene function. Thus, we developed a Web-based tool, KaPPA-View, for representing quantitative data for individual transcripts and/or metabolites on plant metabolic pathway maps. We prepared a set of comprehensive metabolic pathway maps for Arabidopsis (Arabidopsis thaliana) and depicted these graphically in Scalable Vector Graphics format. Individual transcripts assigned to a reaction are represented symbolically together with the symbols of the reaction and metabolites on metabolic pathway maps. Using quantitative values for transcripts and/or metabolites submitted by the user as Comma Separated Value-formatted text through the Internet, the KaPPA-View server inserts colored symbols corresponding to a defined metabolic process at that site on the maps and returns them to the users browser. The server also provides information on transcripts and metabolites in pop-up windows. To demonstrate the process, we describe the dataset obtained for transgenic plants that overexpress the PAP1 gene encoding a MYB transcription factor on metabolic pathway maps. The presentation of data in this manner is useful for viewing metabolic data in a way that facilitates the discussion of gene function.


Plant Physiology | 2010

Light Quality-Mediated Petiole Elongation in Arabidopsis during Shade Avoidance Involves Cell Wall Modification by Xyloglucan Endotransglucosylase/Hydrolases

Rashmi Sasidharan; C. C. Chinnappa; Marten Staal; J. Theo M. Elzenga; Ryusuke Yokoyama; Kazuhiko Nishitani; Laurentius A. C. J. Voesenek; Ronald Pierik

Some plants can avoid shaded conditions via rapid shoot elongation, thus growing into better lit areas in a canopy. Cell wall-modifying mechanisms promoting this elongation response, therefore, are important regulatory points during shade avoidance. Two major cell wall-modifying protein families are expansins and xyloglucan endotransglucosylase/hydrolases (XTHs). The role of these proteins during shade avoidance was studied in Arabidopsis (Arabidopsis thaliana). In response to two shade cues, low red to far-red light (implying neighbor proximity) and green shade (mimicking dense canopy conditions), Arabidopsis showed classic shade avoidance features: petiole elongation and leaf hyponasty. Measurement of the apoplastic proton flux in green shade-treated petioles revealed a rapid efflux of protons into the apoplast within minutes, unlike white light controls. This apoplastic acidification probably provides the acidic pH required for the optimal activity of cell wall-modifying proteins like expansins and XTHs. Acid-induced extension, expansin susceptibility, and extractable expansin activity were similar in petioles from white light- and shade-treated plants. XTH activity, however, was high in petioles exposed to shade treatments. Five XTH genes (XTH9, -15, -16, -17, and -19) were positively regulated by low red to far-red light conditions, while the latter four and XTH22 showed a significant up-regulation also in response to green shade. Consistently, knockout mutants for two of these XTH genes also had reduced or absent shade avoidance responses to these light signals. These results point toward the cell wall as a vital regulatory point during shade avoidance.


Journal of Plant Research | 2006

A principal role for AtXTH18 in Arabidopsis thaliana root growth: a functional analysis using RNAi plants

Yasue Osato; Ryusuke Yokoyama; Kazuhiko Nishitani

Rearrangement of cellulose microfibrils within cell-wall matrices is considered one of the most critical steps in the regulation of both the orientation and extent of cell expansion in plants. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a family of enzymes that mediate the construction and restructuring of load-bearing cross links among cellulose microfibrils. The Arabidopsis thaliana XTH genes AtXTH17, 18, 19, and 20 are phylogenetically closely related to one another and are preferentially expressed in the roots. However, they exhibit different expression profiles within the root and respond to hormonal signals differently. To investigate their functions in root growth, we examined phenotypes of loss-of-function mutants for these genes using T-DNA insertion lines and RNAi plants. These functional analyses disclosed a principal role for the AtXTH18 gene in primary root elongation. Of the four XTH genes, AtXTH18 exhibits the highest level of mRNA expression. We also determined auxin-signaling pathways for these genes using a mutant with a defect in the AXR2/IAA7 gene and found that the expression of AtXTH19 in the elongation/maturation region of the root is under the control of the AXR2/IAA7 signaling pathway.


Journal of Biological Chemistry | 2006

An Isoflavone Conjugate-hydrolyzing β-Glucosidase from the Roots of Soybean (Glycine max) Seedlings PURIFICATION, GENE CLONING, PHYLOGENETICS, AND CELLULAR LOCALIZATION

Hirokazu Suzuki; Seiji Takahashi; Ryoko Watanabe; Yusuke Fukushima; Naoki Fujita; Akio Noguchi; Ryusuke Yokoyama; Kazuhiko Nishitani; Tokuzo Nishino; Toru Nakayama

Soybeans (Glycine max (L.) Merr.) and certain other legumes excrete isoflavones from their roots, which participate in plantmicrobe interactions such as symbiosis and as a defense against infections by pathogens. In G. max, the release of free isoflavones from their conjugates, the latent forms, is mediated by an isoflavone conjugate-hydrolyzing β-glucosidase. Here we report on the purification and cDNA cloning of this important β-glucosidase from the roots of G. max seedlings as well as related phylogenetic and cellular localization studies. The purified enzyme, isoflavone conjugate-hydrolyzing β-glucosidase from roots of G. max seedling (GmICHG), is a homodimeric glycoprotein with a subunit molecular mass of 58 kDa and is capable of directly hydrolyzing genistein 7-O-(6 ″-O-malonyl-β-d-glucoside) to produce free genistein (kcat, 98 s-1; Km, 25 μm at 30 °C, pH 7.0). GmICHG cDNA was isolated based on the amino acid sequence of the purified enzyme. GmICHG cDNA was abundantly expressed in the roots of G. max seedlings but only negligibly in the hypocotyl and cotyledon. An immunocytochemical analysis using anti-GmICHG antibodies, along with green fluorescent protein imaging analyses of Arabidopsis cultured cells transformed by the GmICHG:GFP fusion gene, revealed that the enzyme is exclusively localized in the cell wall and intercellular space of seedling roots, particularly in the cell wall of root hairs. A phylogenetic analysis revealed that GmICHG is a member of glycoside hydrolase family 1 and can be co-clustered with many other leguminous β-glucosidases, the majority of which may also be involved in flavonoid-mediated interactions of legumes with microbes.


The Plant Cell | 2012

Demethylesterification of the Primary Wall by PECTIN METHYLESTERASE35 Provides Mechanical Support to the Arabidopsis Stem

Shoko Hongo; Kaori Sato; Ryusuke Yokoyama; Kazuhiko Nishitani

The ability of secondary cell walls to provide mechanical support to plant stems is well known. This work shows that primary cell walls also provide support. PECTIN METHYLESTERASE35 strengthens Arabidopsis thaliana shoots by demethylesterifying homogalacturonan in primary cell walls, including the middle lamella. Secondary cell walls, which contain lignin, have traditionally been considered essential for the mechanical strength of the shoot of land plants, whereas pectin, which is a characteristic component of the primary wall, is not considered to be involved in the mechanical support of the plant. Contradicting this conventional knowledge, loss-of-function mutant alleles of Arabidopsis thaliana PECTIN METHYLESTERASE35 (PME35), which encodes a pectin methylesterase, showed a pendant stem phenotype and an increased deformation rate of the stem, indicating that the mechanical strength of the stem was impaired by the mutation. PME35 was expressed specifically in the basal part of the inflorescence stem. Biochemical characterization showed that the activity of pectin methylesterase was significantly reduced in the basal part of the mutant stem. Immunofluorescence microscopy and immunogold electron microscopy analyses using JIM5, JIM7, and LM20 monoclonal antibodies revealed that demethylesterification of methylesterified homogalacturonans in the primary cell wall of the cortex and interfascicular fibers was suppressed in the mutant, but lignified cell walls in the interfascicular and xylary fibers were not affected. These phenotypic analyses indicate that PME35-mediated demethylesterification of the primary cell wall directly regulates the mechanical strength of the supporting tissue.


Journal of Plant Research | 1995

Endo-Xyloglucan Transferase, a New Class of Transferase Involved in Cell Wall Construction

Kazuhiko Nishitani

Cell shape in plants is constrained by cell walls, which are thick yet dynamic structures composed of crystalline cellulose microfibrils and matrix polymers. Xyloglucans are the principal component of the matrix polymers and bind tightly to the surface of cellulose microfibrils and thereby cross-link them to form an interwoven xyloglucan-cellulose network structure. Thus, cleavage and reconnection of the cross-links between xyloglucan molecules are required for the rearrangement of the cell wall architecture, the process essential for both cell wall expansion and the wall deposition occurring during cell growth and differentiation. Endoxyloglucan transferase (EXT) is a newly identified class of transferase that catalyzes molecular grafting between xyloglucan molecules. This enzyme catalyzes both endo-type splitting of a xyloglucan molecule and reconnection of a newly generated reducing terminus of the xyloglucan to the non-reducing terminus of another xyloglucan molecule, thereby mediating molecular grafting between xyloglucan cross-links in plant cell walls. Molecular cloning and sequencing of EXT-cDNAs derived from five different plant species includingA. thaliana andV. angularis has revealed that the amino acid sequence of the mature protein is extensively conserved in the five different plant species, indicating that EXT protein is ubiquitous among higher plants. This structural study has also disclosed the presence of a group of xyloglucan related proteins (XRPs) with transferase activity in higher plants. Current data strongly suggest that these proteins are involved in a wide spectrum of physiological activities including cell wall expansion and deposition in growing cell walls.


Plant Molecular Biology | 2003

Active gene expression of a xyloglucan endotransglucosylase/hydrolase gene, XTH9, in inflorescence apices is related to cell elongation in Arabidopsis thaliana

Hideki Hyodo; Seiyei Yamakawa; Yuji Takeda; Masao Tsuduki; Akiho Yokota; Kazuhiko Nishitani; Takayuki Kohchi

Regulation of cell wall structure plays a central role in growth and differentiation in plants. Xyloglucan endotransglucosylase/hydrolases (XTHs) that catalyze the cleavage and molecular grafting of xyloglucan chains function in loosening and rearrangement of the cell wall. We have characterized XTH9, a member of the XTH family that was isolated by systematic differential screening for highly expressed genes in shoot apices in Arabidopsis. In the vegetative phase, XTH9 transcripts accumulate in the shoot apex region. In the reproductive phase, transcript levels in shoot apices increase further, and they also are detected in flower buds, flower stalks and internodes bearing flowers. XTH9 expression levels were reduced markedly in mutants such as acl which are characterized by short internodal cell lengths, but recover at permissive temperatures in the temperature-sensitive acl mutants. Differential expression of XTH9 along the inflorescence stem was also detected in pin1 where no lateral organs are formed. These observations suggest that XTH9 expression is coordinated with plant development, including the differentiation from vegetative and reproductive meristems and cell elongation of the inflorescence stem.

Collaboration


Dive into the Kazuhiko Nishitani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshio Masuda

National Archives and Records Administration

View shared research outputs
Top Co-Authors

Avatar

Noriaki Ishioka

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toru Shimazu

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsunori Omori

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge