Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryusuke Yokoyama is active.

Publication


Featured researches published by Ryusuke Yokoyama.


The EMBO Journal | 2002

The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation

Gyung-Tae Kim; Keiko Shoda; Tomohiko Tsuge; Kiu-Hyung Cho; Hirofumi Uchimiya; Ryusuke Yokoyama; Kazuhiko Nishitani; Hirokazu Tsukaya

We previously showed that the ANGUSTIFOLIA (AN) gene regulates the width of leaves of Arabidopsis thaliana, by controlling the polar elongation of leaf cells. In the present study, we found that the abnormal arrangement of cortical microtubules (MTs) in an leaf cells appeared to account entirely for the abnormal shape of the cells. It suggested that the AN gene might regulate the polarity of cell growth by controlling the arrangement of cortical MTs. We cloned the AN gene using a map‐based strategy and identified it as the first member of the CtBP family to be found in plants. Wild‐type AN cDNA reversed the narrow‐leaved phenotype and the abnormal arrangement of cortical MTs of the an‐1 mutation. In the animal kingdom, CtBPs self‐associate and act as co‐repressors of transcription. The AN protein can also self‐associate in the yeast two‐hybrid system. Furthermore, microarray analysis suggested that the AN gene might regulate the expression of certain genes, e.g. the gene involved in formation of cell walls, MERI5. A discussion of the molecular mechanisms involved in the leaf shape regulation is presented based on our observations.


Plant Physiology | 2004

A Surprising Diversity and Abundance of Xyloglucan Endotransglucosylase/Hydrolases in Rice. Classification and Expression Analysis

Ryusuke Yokoyama; Jocelyn K. C. Rose; Kazuhiko Nishitani

A search of the recently completed genomic database of rice (Oryza sativa) identified a 29-member xyloglucan endotransglucosylase/hydrolase (OsXTH) gene family. This first report of a complete XTH family from a monocotyledonous species reveals that the OsXTH family is comparable in size with that of the dicotyledon Arabidopsis thaliana, which consists of 33 AtXTH genes. This is surprising because xyloglucan, the specific substrate of XTHs, is considerably less abundant in cell walls of monocotyledons than dicotyledons and is not typically ascribed an important structural role in monocotyledons. As a first step toward determining the roles of rice XTHs, the expression patterns of all 29 OsXTH genes were examined using a quantitative DNA microarray procedure with gene-specific oligonucleotide probes. The analysis showed that most members of the rice XTH family exhibited organ- and growth stage-specific expression. This was confirmed by quantitative real-time reverse transcriptase-polymerase chain reaction analysis of representative OsXTH members. This revealed in more detail the temporally and spatially controlled expression profiles of individual OsXTH genes at particular sites in rice. Previous reports indicated that grasses have relatively greater xyloglucan endotransglucosylase activities, one of the two enzyme activities catalyzed by XTHs, than in equivalent tissues in dicotyledons. This observation, together with the tissue-specific and growth stage-dependent expression of a large rice XTH gene family, suggests that xyloglucan metabolism plays a more central role in monocotyledon cell wall restructuring than has been reported previously.


Plant Physiology | 2010

Light Quality-Mediated Petiole Elongation in Arabidopsis during Shade Avoidance Involves Cell Wall Modification by Xyloglucan Endotransglucosylase/Hydrolases

Rashmi Sasidharan; C. C. Chinnappa; Marten Staal; J. Theo M. Elzenga; Ryusuke Yokoyama; Kazuhiko Nishitani; Laurentius A. C. J. Voesenek; Ronald Pierik

Some plants can avoid shaded conditions via rapid shoot elongation, thus growing into better lit areas in a canopy. Cell wall-modifying mechanisms promoting this elongation response, therefore, are important regulatory points during shade avoidance. Two major cell wall-modifying protein families are expansins and xyloglucan endotransglucosylase/hydrolases (XTHs). The role of these proteins during shade avoidance was studied in Arabidopsis (Arabidopsis thaliana). In response to two shade cues, low red to far-red light (implying neighbor proximity) and green shade (mimicking dense canopy conditions), Arabidopsis showed classic shade avoidance features: petiole elongation and leaf hyponasty. Measurement of the apoplastic proton flux in green shade-treated petioles revealed a rapid efflux of protons into the apoplast within minutes, unlike white light controls. This apoplastic acidification probably provides the acidic pH required for the optimal activity of cell wall-modifying proteins like expansins and XTHs. Acid-induced extension, expansin susceptibility, and extractable expansin activity were similar in petioles from white light- and shade-treated plants. XTH activity, however, was high in petioles exposed to shade treatments. Five XTH genes (XTH9, -15, -16, -17, and -19) were positively regulated by low red to far-red light conditions, while the latter four and XTH22 showed a significant up-regulation also in response to green shade. Consistently, knockout mutants for two of these XTH genes also had reduced or absent shade avoidance responses to these light signals. These results point toward the cell wall as a vital regulatory point during shade avoidance.


Journal of Plant Research | 2006

A principal role for AtXTH18 in Arabidopsis thaliana root growth: a functional analysis using RNAi plants

Yasue Osato; Ryusuke Yokoyama; Kazuhiko Nishitani

Rearrangement of cellulose microfibrils within cell-wall matrices is considered one of the most critical steps in the regulation of both the orientation and extent of cell expansion in plants. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a family of enzymes that mediate the construction and restructuring of load-bearing cross links among cellulose microfibrils. The Arabidopsis thaliana XTH genes AtXTH17, 18, 19, and 20 are phylogenetically closely related to one another and are preferentially expressed in the roots. However, they exhibit different expression profiles within the root and respond to hormonal signals differently. To investigate their functions in root growth, we examined phenotypes of loss-of-function mutants for these genes using T-DNA insertion lines and RNAi plants. These functional analyses disclosed a principal role for the AtXTH18 gene in primary root elongation. Of the four XTH genes, AtXTH18 exhibits the highest level of mRNA expression. We also determined auxin-signaling pathways for these genes using a mutant with a defect in the AXR2/IAA7 gene and found that the expression of AtXTH19 in the elongation/maturation region of the root is under the control of the AXR2/IAA7 signaling pathway.


Journal of Biological Chemistry | 2006

An Isoflavone Conjugate-hydrolyzing β-Glucosidase from the Roots of Soybean (Glycine max) Seedlings PURIFICATION, GENE CLONING, PHYLOGENETICS, AND CELLULAR LOCALIZATION

Hirokazu Suzuki; Seiji Takahashi; Ryoko Watanabe; Yusuke Fukushima; Naoki Fujita; Akio Noguchi; Ryusuke Yokoyama; Kazuhiko Nishitani; Tokuzo Nishino; Toru Nakayama

Soybeans (Glycine max (L.) Merr.) and certain other legumes excrete isoflavones from their roots, which participate in plantmicrobe interactions such as symbiosis and as a defense against infections by pathogens. In G. max, the release of free isoflavones from their conjugates, the latent forms, is mediated by an isoflavone conjugate-hydrolyzing β-glucosidase. Here we report on the purification and cDNA cloning of this important β-glucosidase from the roots of G. max seedlings as well as related phylogenetic and cellular localization studies. The purified enzyme, isoflavone conjugate-hydrolyzing β-glucosidase from roots of G. max seedling (GmICHG), is a homodimeric glycoprotein with a subunit molecular mass of 58 kDa and is capable of directly hydrolyzing genistein 7-O-(6 ″-O-malonyl-β-d-glucoside) to produce free genistein (kcat, 98 s-1; Km, 25 μm at 30 °C, pH 7.0). GmICHG cDNA was isolated based on the amino acid sequence of the purified enzyme. GmICHG cDNA was abundantly expressed in the roots of G. max seedlings but only negligibly in the hypocotyl and cotyledon. An immunocytochemical analysis using anti-GmICHG antibodies, along with green fluorescent protein imaging analyses of Arabidopsis cultured cells transformed by the GmICHG:GFP fusion gene, revealed that the enzyme is exclusively localized in the cell wall and intercellular space of seedling roots, particularly in the cell wall of root hairs. A phylogenetic analysis revealed that GmICHG is a member of glycoside hydrolase family 1 and can be co-clustered with many other leguminous β-glucosidases, the majority of which may also be involved in flavonoid-mediated interactions of legumes with microbes.


The Plant Cell | 2012

Demethylesterification of the Primary Wall by PECTIN METHYLESTERASE35 Provides Mechanical Support to the Arabidopsis Stem

Shoko Hongo; Kaori Sato; Ryusuke Yokoyama; Kazuhiko Nishitani

The ability of secondary cell walls to provide mechanical support to plant stems is well known. This work shows that primary cell walls also provide support. PECTIN METHYLESTERASE35 strengthens Arabidopsis thaliana shoots by demethylesterifying homogalacturonan in primary cell walls, including the middle lamella. Secondary cell walls, which contain lignin, have traditionally been considered essential for the mechanical strength of the shoot of land plants, whereas pectin, which is a characteristic component of the primary wall, is not considered to be involved in the mechanical support of the plant. Contradicting this conventional knowledge, loss-of-function mutant alleles of Arabidopsis thaliana PECTIN METHYLESTERASE35 (PME35), which encodes a pectin methylesterase, showed a pendant stem phenotype and an increased deformation rate of the stem, indicating that the mechanical strength of the stem was impaired by the mutation. PME35 was expressed specifically in the basal part of the inflorescence stem. Biochemical characterization showed that the activity of pectin methylesterase was significantly reduced in the basal part of the mutant stem. Immunofluorescence microscopy and immunogold electron microscopy analyses using JIM5, JIM7, and LM20 monoclonal antibodies revealed that demethylesterification of methylesterified homogalacturonans in the primary cell wall of the cortex and interfascicular fibers was suppressed in the mutant, but lignified cell walls in the interfascicular and xylary fibers were not affected. These phenotypic analyses indicate that PME35-mediated demethylesterification of the primary cell wall directly regulates the mechanical strength of the supporting tissue.


Plant Molecular Biology | 2005

Comprehensive approach to genes involved in cell wall modifications in Arabidopsis thaliana

Keiko Imoto; Ryusuke Yokoyama; Kazuhiko Nishitani

The plant cell wall is of supermolecular architecture, and is composed of various types of heterogeneous polymers. A few thousand enzymes and structural proteins are directly involved in the construction processes, and in the functional aspects of the dynamic architecture in Arabidopsis thaliana. Most of these proteins are encoded by multigene families, and most members within each family share significant similarities in structural features, but often exhibit differing expression profiles and physiological functions. Thus, for the molecular dissection of cell wall dynamics, it is necessary to distinguish individual members within a family of proteins. As a first step towards characterizing the processes involved in cell wall dynamics, we have manufactured a gene-specific 70-mer oligo microarray that consists of 765 genes classified into 30 putative families of proteins that are implicated in the cell wall dynamics of Arabidopsis. By using this array system, we identified several sets of genes that exhibit organ preferential expression profiles. We also identified gene sets that are expressed differentially at certain specific growth stages of the Arabidopsis inflorescence stem. Our results indicate that there is a division of roles among family members within each of the putative cell wall-related gene families.


Development | 2008

The Arabidopsis OBERON1 and OBERON2 genes encode plant homeodomain finger proteins and are required for apical meristem maintenance.

Shunsuke Saiga; Chihiro Furumizu; Ryusuke Yokoyama; Tetsuya Kurata; Shusei Sato; Tomohiko Kato; Satoshi Tabata; Mitsuhiro Suzuki; Yoshibumi Komeda

Maintenance of the stem cell population located at the apical meristems is essential for repetitive organ initiation during the development of higher plants. Here, we have characterized the roles of OBERON1 (OBE1) and its paralog OBERON2 (OBE2), which encode plant homeodomain finger proteins, in the maintenance and/or establishment of the meristems in Arabidopsis. Although the obe1 and obe2 single mutants were indistinguishable from wild-type plants, the obe1 obe2 double mutant displayed premature termination of the shoot meristem, suggesting that OBE1 and OBE2 function redundantly. Further analyses revealed that OBE1 and OBE2 allow the plant cells to acquire meristematic activity via the WUSCHEL-CLAVATA pathway, which is required for the maintenance of the stem cell population, and they function parallel to the SHOOT MERISTEMLESS gene, which is required for preventing cell differentiation in the shoot meristem. In addition, obe1 obe2 mutants failed to establish the root apical meristem, lacking both the initial cells and the quiescent center. In situ hybridization revealed that expression of PLETHORA and SCARECROW, which are required for stem cell specification and maintenance in the root meristem, was lost from obe1 obe2 mutant embryos. Taken together, these data suggest that the OBE1 and OBE2 genes are functionally redundant and crucial for the maintenance and/or establishment of both the shoot and root meristems.


Current Biology | 2013

A dof transcription factor, SCAP1, is essential for the development of functional stomata in arabidopsis

Juntaro Negi; Kosuke Moriwaki; Mineko Konishi; Ryusuke Yokoyama; Toshiaki Nakano; Kensuke Kusumi; Mimi Hashimoto-Sugimoto; Julian I. Schroeder; Kazuhiko Nishitani; Shuichi Yanagisawa; Koh Iba

Stomata are highly specialized organs that consist of pairs of guard cells and regulate gas and water vapor exchange in plants [1-3]. Although early stages of guard cell differentiation have been described [4-10] and were interpreted in analogy to processes of cell type differentiation in animals [11], the downstream development of functional stomatal guard cells remains poorly understood. We have isolated an Arabidopsis mutant, stomatal carpenter 1 (scap1), that develops irregularly shaped guard cells and lacks the ability to control stomatal aperture, including CO2-induced stomatal closing and light-induced stomatal opening. SCAP1 was identified as a plant-specific Dof-type transcription factor expressed in maturing guard cells, but not in guard mother cells. SCAP1 regulates the expression of genes encoding key elements of stomatal functioning and morphogenesis, such as K(+) channel protein, MYB60 transcription factor, and pectin methylesterase. Consequently, ion homeostasis was disturbed in scap1 guard cells, and esterification of extracellular pectins was impaired so that the cell walls lining the pores did not mature normally. We conclude that SCAP1 regulates essential processes of stomatal guard cell maturation and functions as a key transcription factor regulating the final stages of guard cell differentiation.


Journal of Plant Research | 2006

Identification and characterization of Arabidopsis thaliana genes involved in xylem secondary cell walls.

Ryusuke Yokoyama; Kazuhiko Nishitani

The xylem of higher plants offers support to aerial portions of the plant body and serves as conduit for the translocation of water and nutrients. Terminal differentiation of xylem cells typically involves deposition of thick secondary cell walls. This is a dynamic cellular process accompanied by enhanced rates of cellulose deposition and the induction of synthesis of specific secondary-wall matrix polysaccharides and lignin. The secondary cell wall is essential for the function of conductive and supportive xylem tissues. Recently, significant progress has been made in identifying the genes responsible for xylem secondary cell wall formation. However, our present knowledge is still insufficient to account for the molecular processes by which this complex system operates. To acquire further information about xylem secondary cell walls, we initially focused our research effort on a set of genes specifically implicated in secondary cell wall formation, as well as on loss-of-function mutants. Results from two microarray screens identified several key candidate genes responsible for secondary cell wall formation. Reverse genetic analyses led to the identification of a glycine-rich protein involved in maintaining the stable structure of protoxylem, which is essential for the transport of water and nutrients. A combination of expression analyses and reverse genetics allows us to systematically identify new genes required for the development of physical properties of the xylem secondary wall.

Collaboration


Dive into the Ryusuke Yokoyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge