Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuhiro Kawamura is active.

Publication


Featured researches published by Kazuhiro Kawamura.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment.

Kazuhiro Kawamura; Yuan Cheng; Nao Suzuki; Masashi Deguchi; Yorino Sato; Seido Takae; Chi-hong Ho; Nanami Kawamura; Midori Tamura; Shu Hashimoto; Yodo Sugishita; Y. Morimoto; Yoshihiko Hosoi; Nobuhito Yoshioka; Bunpei Ishizuka; Aaron J. W. Hsueh

Significance Human ovaries hold follicles containing oocytes. When follicles mature, they release eggs for fertilization. Patients with primary ovarian insufficiency develop menopausal symptoms at less than 40 y of age. They have few remaining follicles and their only chance for bearing a baby is through egg donation. Kawamura et al. demonstrated that Hippo and Akt signaling pathways regulate follicle growth. Using an in vitro activation approach, they first removed ovaries from infertile patients, followed by fragmentation to disrupt Hippo signaling and drug treatment to stimulate Akt signaling. After grafting ovarian tissues back to patients, they found rapid follicle growth in some patients and successfully retrieved mature eggs. After in vitro fertilization and embryo transfer, a live birth is now reported. Primary ovarian insufficiency (POI) and polycystic ovarian syndrome are ovarian diseases causing infertility. Although there is no effective treatment for POI, therapies for polycystic ovarian syndrome include ovarian wedge resection or laser drilling to induce follicle growth. Underlying mechanisms for these disruptive procedures are unclear. Here, we explored the role of the conserved Hippo signaling pathway that serves to maintain optimal size across organs and species. We found that fragmentation of murine ovaries promoted actin polymerization and disrupted ovarian Hippo signaling, leading to increased expression of downstream growth factors, promotion of follicle growth, and the generation of mature oocytes. In addition to elucidating mechanisms underlying follicle growth elicited by ovarian damage, we further demonstrated additive follicle growth when ovarian fragmentation was combined with Akt stimulator treatments. We then extended results to treatment of infertility in POI patients via disruption of Hippo signaling by fragmenting ovaries followed by Akt stimulator treatment and autografting. We successfully promoted follicle growth, retrieved mature oocytes, and performed in vitro fertilization. Following embryo transfer, a healthy baby was delivered. The ovarian fragmentation–in vitro activation approach is not only valuable for treating infertility of POI patients but could also be useful for middle-aged infertile women, cancer patients undergoing sterilizing treatments, and other conditions of diminished ovarian reserve.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Activation of dormant ovarian follicles to generate mature eggs

Jing Li; Kazuhiro Kawamura; Yuan Cheng; Shuang Liu; Cynthia Klein; Shu Liu; Enkui Duan; Aaron J. W. Hsueh

Although multiple follicles are present in mammalian ovaries, most of them remain dormant for years or decades. During reproductive life, some follicles are activated for development. Genetically modified mouse models with oocyte-specific deletion of genes in the PTEN-PI3K-Akt-Foxo3 pathway exhibited premature activation of all dormant follicles. Using an inhibitor of the Phosphatase with TENsin homology deleted in chromosome 10 (PTEN) phosphatase and a PI3K activating peptide, we found that short-term treatment of neonatal mouse ovaries increased nuclear exclusion of Foxo3 in primordial oocytes. After transplantation under kidney capsules of ovariectomized hosts, treated follicles developed to the preovulatory stage with mature eggs displaying normal epigenetic changes of imprinted genes. After in vitro fertilization and embryo transfer, healthy progeny with proven fertility were delivered. Human ovarian cortical fragments from cancer patients were also treated with the PTEN inhibitor. After xeno-transplantation to immune-deficient mice for 6 months, primordial follicles developed to the preovulatory stage with oocytes capable of undergoing nuclear maturation. Major differences between male and female mammals are unlimited number of sperm and paucity of mature oocytes. Thus, short-term in vitro activation of dormant ovarian follicles after stimulation of the PI3K-Akt pathway allows the generation of a large supply of mature female germ cells for future treatment of infertile women with a diminishing ovarian reserve and for cancer patients with cryo-preserved ovaries. Generation of a large number of human oocytes also facilitates future derivation of embryonic stem cells for regenerative medicine.


Molecular and Cellular Biology | 2004

Neonatal lethality of LGR5 null mice is associated with ankyloglossia and gastrointestinal distension.

Hiroki Morita; Sabine Mazerbourg; Donna M. Bouley; Ching-Wei Luo; Kazuhiro Kawamura; Yoshimitsu Kuwabara; Helene Baribault; Hui Tian; Aaron J. W. Hsueh

ABSTRACT The physiological role of an orphan G protein-coupled receptor, LGR5, was investigated by targeted deletion of this seven-transmembrane protein containing a large N-terminal extracellular domain with leucine-rich repeats. LGR5 null mice exhibited 100% neonatal lethality characterized by gastrointestinal tract dilation with air and an absence of milk in the stomach. Gross and histological examination revealed fusion of the tongue to the floor of oral cavity in the mutant newborns and immunostaining of LGR5 expression in the epithelium of the tongue and in the mandible of the wild-type embryos. The observed ankyloglossia phenotype provides a model for understanding the genetic basis of this craniofacial defect in humans and an opportunity to elucidate the physiological role of the LGR5 signaling system during embryonic development.


Human Reproduction | 2015

Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency

Nao Suzuki; Nobuhito Yoshioka; Seido Takae; Yodo Sugishita; Midori Tamura; Shu Hashimoto; Y. Morimoto; Kazuhiro Kawamura

STUDY QUESTION Is ovarian tissue cryopreservation using vitrification followed by in vitro activation (IVA) of dormant follicles a potential approach for infertility treatment of patients with primary ovarian insufficiency (POI)? SUMMARY ANSWER Our vitrification approach followed by IVA treatment is a potential infertility therapy for POI patients whose ovaries contain residual follicles. WHAT IS KNOWN ALREADY Akt (protein kinase B) stimulators [PTEN (phosphatase with TENsin homology deleted in chromosome 10) inhibitor and phosphatidyinositol-3-kinase (PI3 kinase) stimulator] activate dormant primordial follicles in vitro and ovarian fragmentation disrupts the Hippo signaling pathway, leading to the promotion of follicle growth. We treated POI patients with a combination of ovarian vitrification, fragmentation and drug treatment, followed by auto-transplantation, and reported successful follicle growth and pregnancies. STUDY DESIGN, SIZE, DURATION Prospective clinical study of 37 infertile women with POI between 12 August 2011 and 1 November 2013. We enrolled 10 new patients since the previous publication. PARTICIPANTS/MATERIALS, SETTING, METHODS POI patients were originally selected based on a history of amenorrhea for more than 1 year and elevated serum FSH levels of >40 mIU/ml (n = 31) but this was later changed to >4 months, age <40 years and serum FSH levels of >35 mIU/ml (n = 6) (mean 71.8 ± 30.8, range 35.5-197.6) so as to include patients with a shorter duration of amenorrhea. Under laparoscopic surgery, ovariectomy was performed and ovarian cortices were dissected into strips for vitrification. Some pieces were examined histologically. After warming, two to three strips were fragmented into smaller cubes before culturing with Akt stimulators for 2 days. After washing, ovarian cubes were transplanted beneath the serosa of Fallopian tubes under laparoscopic surgery. Follicle growth was monitored by ultrasound and serum estrogen levels. After oocyte retrieval from mature follicles, IVF was performed. MAIN RESULTS AND THE ROLE OF CHANCE Among 37 patients, 54% had residual follicles based on histology. Among patients with follicles, 9 out of 20 showed follicle growth in auto-grafts with 24 oocytes retrieved from six patients. Following IVF and embryo transfer into four patients, three pregnancies were detected based on serum hCG, followed by one miscarriage and two successful deliveries. For predicting IVA success, we found that routine histological analyses of ovarian cortices and shorter duration from initial POI diagnosis to ovariectomy are valid parameters. LIMITATIONS, REASONS FOR CAUTION Although our findings suggest that the present vitrification protocol is effective for ovarian tissue cryopreservation, we have not compared the potential of vitrification and slow freezing in follicle growth after grafting. We chose the serosa of Fallopian tubes as the auto-grating site due to its high vascularity and the ease to monitor follicle growth. Future studies are needed to evaluate the best auto-grafting sites for ovarian tissues. Also, future studies are needed to identify biological markers to indicate the presence of residual follicles in POI to predict IVA treatment outcome. WIDER IMPLICATIONS OF THE FINDINGS In POI patients, ovarian reserve, namely the pool of residual follicles, continues to diminish with age. If one ovary is cryopreserved at an earlier stage of POI, patients could undergo additional non-invasive infertility treatments before the final decision for the IVA treatment. Furthermore, in the cases of unmarried POI patients, cryopreservation of ovarian tissues allows their fertility preservation until they desire to bear children. STUDY FUNDING/COMPETING INTERESTS This work was supported by Grant-In-Aid for Scientific Research (Research B: 24390376, Challenging Exploratory Research: 24659722, and Innovative Areas, Mechanisms regulating gamete formation in animals: 26114510) and by research funds from the Smoking Research Foundation, and the Takeda Science Foundation. None of the authors has a conflict of interest. TRIAL REGISTRATION NUMBER UMIN000010828.


Endocrine Reviews | 2015

Intraovarian Control of Early Folliculogenesis

Aaron J. W. Hsueh; Kazuhiro Kawamura; Yuan Cheng; Bart C.J.M. Fauser

Although hormonal regulation of ovarian follicle development has been extensively investigated, most studies concentrate on the development of early antral follicles to the preovulatory stage, leading to the successful use of exogenous FSH for infertility treatment. Accumulating data indicate that preantral follicles are under stringent regulation by FSH and local intraovarian factors, thus providing the possibility to develop new therapeutic approaches. Granulosa cell-derived C-type natriuretic factor not only suppresses the final maturation of oocytes to undergo germinal vesicle breakdown before ovulation but also promotes preantral and antral follicle growth. In addition, several oocyte- and granulosa cell-derived factors stimulate preantral follicle growth by acting through wingless, receptor tyrosine kinase, receptor serine kinase, and other signaling pathways. In contrast, the ovarian Hippo signaling pathway constrains follicle growth and disruption of Hippo signaling promotes the secretion of downstream CCN growth factors capable of promoting follicle growth. Although the exact hormonal factors involved in primordial follicle activation has yet to be elucidated, the protein kinase B (AKT) and mammalian target of rapamycin signaling pathways are important for the activation of dormant primordial follicles. Hippo signaling disruption after ovarian fragmentation, combined with treating ovarian fragments with phosphatase and tensin homolog (PTEN) inhibitors and phosphoinositide-3-kinase stimulators to augment AKT signaling, promote the growth of preantral follicles in patients with primary ovarian insufficiency, leading to a new infertility intervention for such patients. Elucidation of intraovarian mechanisms underlying early folliculogenesis may allow the development of novel therapeutic strategies for patients diagnosed with primary ovarian insufficiency, polycystic ovary syndrome, and poor ovarian response to FSH stimulation, as well as for infertile women of advanced reproductive age.


Endocrinology | 2009

Brain-Derived Neurotrophic Factor Promotes Implantation and Subsequent Placental Development by Stimulating Trophoblast Cell Growth and Survival

Kazuhiro Kawamura; Nanami Kawamura; Wataru Sato; Jun Fukuda; Jin Kumagai; Toshinobu Tanaka

Successful implantation of the blastocyst and subsequent placental development is essential for reproduction. Expression of brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5, together with their receptor, tyrosine kinase B (TrkB), in trophectoderm cells of blastocyst suggests their potential roles in implantation and placental development. Here we demonstrated that treatment with BDNF promoted blastocyst outgrowth, but not adhesion, in vitro and increased levels of the cell invasion marker matrix metalloproteinase-9 in cultured blastocysts through the phosphatidylinositol 3-kinase pathway. After implantation, BDNF and neurotrophin-4/5 proteins as well as TrkB were expressed in trophoblast cells and placentas during different stages of pregnancy. Both TrkB and its ligands were also expressed in decidual cells. Treatment of cultured trophoblast cells with the TrkB ectodomain, or a Trk receptor inhibitor K252a, suppressed cell growth as reflected by decreased proliferation and increased apoptosis, whereas an inactive plasma membrane nonpermeable K252b was ineffective. Studies using the specific inhibitors also indicated the importance of the phosphatidylinositol 3-kinase/Akt pathway in mediating the action of TrkB ligands. In vivo studies in pregnant mice further demonstrated that treatment with K252a, but not K252b, suppressed placental development accompanied by increases in trophoblast cell apoptosis and decreases in placental labyrinth zone at midgestation. In vivo K252a treatment also decreased fetal weight at late gestational stages. Our findings suggested important autocrine/paracrine roles of the BDNF/TrkB signaling system during implantation, subsequent placental development, and fetal growth by increasing trophoblast cell growth and survival.


Developmental Biology | 2003

Survivin acts as an antiapoptotic factor during the development of mouse preimplantation embryos.

Kazuhiro Kawamura; Naoki Sato; Jun Fukuda; Hideya Kodama; Jin Kumagai; Hideo Tanikawa; Yasushi Shimizu; Toshinobu Tanaka

Apoptosis is an essential physiologic process used in almost all tissues to remove damaged or superfluous cells. However, the early embryos are unique because no cell death is found up to the blastocyst stage during normal development. Survivin, a member of the IAP family, is capable of binding to caspases to modulate their functions. Here, we investigated the expression of survivin, and its role in preventing apoptosis in mouse preimplantation embryos. Transcripts for survivin and a splice variant lacking exon 2 were detected from unfertilized oocytes up to hatched blastocyst stage. At the protein level, survivin was also detected at all stages of early embryos. The antisense approach was used to demonstrate the role of survivin on embryo development. Development of early embryos treated with antisense survivin oligonucleotides was arrested at the morula or early blastocyst stage with disruption of tubulin formation and abnormal nuclei, associated with apoptosis. The effect of the antisense was enhanced by cotreatment with an apoptosis-inducing reagent, staurosporine. In contrast, apoptosis induced by the antisense treatment was inhibited by caspase-3 and -9 inhibitors. These results indicate that survivin is an essential antiapoptotic gene expressed in preimplantation embryos and could protect the embryos from apoptosis by inhibiting an apoptotic pathway involving caspases.


Molecular and Cellular Endocrinology | 2003

The role of leptin during the development of mouse preimplantation embryos

Kazuhiro Kawamura; Naoki Sato; Jun Fukuda; Hideya Kodama; Jin Kumagai; Hideo Tanikawa; Masanori Murata; Toshinobu Tanaka

Leptin is known to regulate diverse reproductive functions, and recent studies have implicated involvement of leptin in the early mouse embryo development. The aim of the present study was to investigate the expression of leptin and its functional receptor (OB-Rb) in mouse oocyte and preimplantation embryo, and to examine whether leptin influenced the early embryo development. Leptin mRNA was detected in blastocyst and hatched blastocyst, and OB-Rb mRNA was detected in oocytes, 1-cell, 2-cell, morula, blastocyst and hatched blastocyst. As for the origin of leptin, leptin mRNA was identified in both the oviduct and uterus of the pregnant mouse. Furthermore, in the pregnant mouse, the levels of leptin in uterine fluid were higher than those in the non-pregnant mouse. Supplementation of culture medium with leptin promotes the development of preimplantation embryos from 2-cell stage to the blastocysts, fully expanded blastocysts and hatched blastocysts. Leptin significantly increased the total cell number of blastocysts, and the effect was preferentially observed in the trophectoderm. These findings raise the possibility that leptin regulates the development of mouse preimplantation embryo through a paracrine pathway.


PLOS ONE | 2012

Promotion of Human Early Embryonic Development and Blastocyst Outgrowth In Vitro Using Autocrine/Paracrine Growth Factors

Kazuhiro Kawamura; Yuan Chen; Yimin Shu; Yuan Cheng; Jie Qiao; B. Behr; Renee A. Reijo Pera; Aaron J. W. Hsueh

Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6–8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner’s criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility treatment and future derivation of patient-specific embryonic stem cells.


Molecular Endocrinology | 2012

C-Type Natriuretic Peptide Stimulates Ovarian Follicle Development

Yorino Sato; Yuan Cheng; Kazuhiro Kawamura; Seido Takae; Aaron J. W. Hsueh

C-type natriuretic peptide (CNP) encoded by the NPPC (Natriuretic Peptide Precursor C) gene expressed in ovarian granulosa cells inhibits oocyte maturation by activating the natriuretic peptide receptor (NPR)B (NPRB) in cumulus cells. RT-PCR analyses indicated increased NPPC and NPRB expression during ovarian development and follicle growth, associated with increases in ovarian CNP peptides in mice. In cultured somatic cells from infantile ovaries and granulosa cells from prepubertal animals, treatment with CNP stimulated cGMP production. Also, treatment of cultured preantral follicles with CNP stimulated follicle growth whereas treatment of cultured ovarian explants from infantile mice with CNP, similar to FSH, increased ovarian weight gain that was associated with the development of primary and early secondary follicles to the late secondary stage. Of interest, treatment with FSH increased levels of NPPC, but not NPRB, transcripts in ovarian explants. In vivo studies further indicated that daily injections of infantile mice with CNP for 4 d promoted ovarian growth, allowing successful ovulation induction by gonadotropins. In prepubertal mice, CNP treatment alone also promoted early antral follicle growth to the preovulatory stage, leading to efficient ovulation induction by LH/human chorionic gonadotropin. Mature oocytes retrieved after CNP treatment could be fertilized in vitro and developed into blastocysts, allowing the delivery of viable offspring. Thus, CNP secreted by growing follicles is capable of stimulating preantral and antral follicle growth. In place of FSH, CNP treatment could provide an alternative therapy for female infertility.

Collaboration


Dive into the Kazuhiro Kawamura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yorino Sato

St. Marianna University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seido Takae

St. Marianna University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge