Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuhito Sakamoto is active.

Publication


Featured researches published by Kazuhito Sakamoto.


Nature Immunology | 2013

The transcription factor STAT5 is critical in dendritic cells for the development of TH2 but not TH1 responses.

Bryan D. Bell; Masayuki Kitajima; Ryan P. Larson; Thomas A. Stoklasek; Kristen Dang; Kazuhito Sakamoto; Kay Uwe Wagner; Boris Reizis; Lothar Hennighausen; Steven F. Ziegler

Dendritic cells (DCs) are critical in immune responses, linking innate and adaptive immunity. We found here that DC-specific deletion of the transcription factor STAT5 was not critical for development but was required for T helper type 2 (TH2), but not TH1, allergic responses in both the skin and lungs. Loss of STAT5 in DCs led to the inability to respond to thymic stromal lymphopoietin (TSLP). STAT5 was required for TSLP-dependent DC activation, including upregulation of the expression of costimulatory molecules and chemokine production. Furthermore, TH2 responses in mice with DC-specific loss of STAT5 resembled those seen in mice deficient in the receptor for TSLP. Our results show that the TSLP-STAT5 axis in DCs is a critical component for the promotion of type 2 immunity at barrier surfaces.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Thymic stromal lymphopoietin-mediated STAT5 phosphorylation via kinases JAK1 and JAK2 reveals a key difference from IL-7–induced signaling

Yrina Rochman; Mohit Kashyap; Gertraud W. Robinson; Kazuhito Sakamoto; Julio Gomez-Rodriguez; Kay Uwe Wagner; Warren J. Leonard

Thymic stromal lymphopoietin (TSLP) is a type I cytokine that plays essential roles in allergic/inflammatory skin and airway disorders, in helminth infections, and in regulating intestinal immunity. TSLP signals via IL-7Rα and a specific TSLPR subunit that is highly related to the common cytokine receptor γ chain, γc. Although TSLP has effects on a broad range of hematopoetic cells and can induce STAT5 phosphorylation, TSLP was reported to not signal via JAK kinases, and the mechanism by which TSLP regulates STAT5 phosphorylation has been unclear. We now demonstrate the role of JAK1 and JAK2 in TSLP-mediated STAT5 phosphorylation in mouse and human primary CD4+ T cells, in contrast to the known activation of JAK1 and JAK3 by the related cytokine, IL-7. We also show that just as JAK1 interacts with IL-7Rα, JAK2 is associated with TSLPR protein. Moreover, we demonstrate the importance of STAT5 activation for TSLP-mediated survival and proliferation of CD4+ T cells. These findings clarify the basis for TSLP-mediated signaling and provide an example wherein a cytokine uses JAK1 and JAK2 to mediate the activation of STAT5.


Molecular and Cellular Biology | 2010

Stat5 Promotes Survival of Mammary Epithelial Cells through Transcriptional Activation of a Distinct Promoter in Akt1

Bradley A. Creamer; Kazuhito Sakamoto; Jeffrey W. Schmidt; Aleata A. Triplett; Richard Moriggl; Kay Uwe Wagner

ABSTRACT The signal transducer and activator of transcription 5 (Stat5) plays a pivotal role in the proliferation, secretory differentiation, and survival of mammary epithelial cells. However, there is little information about Stat5 target genes that facilitate these biological processes. We provide here experimental evidence that the prolactin-mediated phosphorylation of Stat5 regulates the transcriptional activation of the Akt1 gene. Stat5 binds to consensus sequences within the Akt1 locus in a growth factor-dependent manner to initiate transcription of a unique Akt1 mRNA from a distinct promoter, which is only active in the mammary gland. Elevating the levels of active Akt1 restores the expression of cyclin D1 and proliferation of Jak2-deficient mammary epithelial cells, which provides evidence that Akt1 acts downstream of Jak/Stat signaling. The ligand-inducible expression of Stat5 in transgenic females mediates a sustained upregulation of Akt1 in mammary epithelial cells during the onset of postlactational involution. Stat5-expressing mammary glands exhibit a delay in involution despite induction of proapoptotic signaling events. Collectively, the results of the present study elucidate an underlying mechanism by which active Stat5 mediates evasion from apoptosis and self-sufficiency in growth signals.


Oncogene | 2010

Janus kinase 2 is required for the initiation but not maintenance of prolactin-induced mammary cancer

Kazuhito Sakamoto; Aleata A. Triplett; Linda A. Schuler; Kay-Uwe Wagner

The prolactin receptor (PRLR), its associated Janus kinase 2 (Jak2) and the signal transducer and activator of transcription 5 (Stat5) are essential for normal mammary gland development. Owing to the upregulation of the PRLR and the local synthesis of its ligand in neoplastic cells, it has been proposed that PRL can act as a local growth factor in human breast cancers. This notion is supported by experimental evidence in transgenic mice, which showed that the mammary-specific expression of PRL contributes to carcinogenesis in vivo. To assess the importance of Jak2/Stat5 signaling during mammary cancer initiation and progression, we generated a PRL-induced mammary cancer model that allows the functional ablation of the Jak2 gene in the mammary epithelium before and after neoplastic transformation. Collectively, the results of this study show that the functional ablation of Jak2 protects against the onset of PRL-induced mammary tumorigenesis, suggesting that targeting this kinase is a relevant strategy for mammary cancer prevention. Surprisingly, Jak2 deficiency did not affect the growth and survival of PRL-induced mammary cancer cells in culture and in vivo. Consequently, Jak2 cannot be a sole therapeutic target to treat the established disease. PRL-induced mammary cancers exhibited an upregulation of ErbB2 and other ErbB receptor tyrosine kinases that may supersede the functionality of PRLR signaling through Jak2.


Cancer Research | 2013

Dormant Cancer Cells Contribute to Residual Disease in a Model of Reversible Pancreatic Cancer

Wan Chi Lin; Nirakar Rajbhandari; Chengbao Liu; Kazuhito Sakamoto; Qian Zhang; Aleata A. Triplett; Surinder K. Batra; Rene Opavsky; Dean W. Felsher; Dominick J. DiMaio; Michael A. Hollingsworth; John P. Morris; Matthias Hebrok; Agnieszka K. Witkiewicz; Jonathan R. Brody; Hallgeir Rui; Kay Uwe Wagner

The initiation and progression of pancreatic ductal adenocarcinoma (PDAC) is governed by a series of genetic and epigenetic changes, but it is still unknown whether these alterations are required for the maintenance of primary and metastatic PDAC. We show here that the c-Myc oncogene is upregulated throughout the entire process of neoplastic progression in human PDAC and in genetically engineered mice that express mutant Kras. To experimentally address whether c-Myc is essential for the growth and survival of cancer cells, we developed a novel mouse model that allows a temporally and spatially controlled expression of this oncogene in pancreatic progenitors and derived lineages of the exocrine pancreas. Unlike previous reports, upregulation of c-Myc was sufficient to induce the formation of adenocarcinomas after a short latency without additional genetic manipulation of cell survival pathways. Deficiency in Cdkn2a increased the rate of metastasis but had no effect on tumor latency or c-Myc-mediated cancer maintenance. Despite a macroscopically complete regression of primary, metastatic, and transplantable tumors following the ablation of c-Myc, some cancer cells remained dormant. A significant number of these residual neoplastic cells expressed cancer stem cell markers, and re-expression of exogenous c-Myc in these cells led to rapid cancer recurrence. Collectively, the results of this study suggest that c-Myc plays a significant role in the progression and maintenance of PDAC, but besides targeting this oncogene or its downstream effectors, additional therapeutic strategies are necessary to eradicate residual cancer cells to prevent disease recurrence.


Molecular and Cellular Endocrinology | 2014

D-type cyclins are important downstream effectors of cytokine signaling that regulate the proliferation of normal and neoplastic mammary epithelial cells

Qian Zhang; Kazuhito Sakamoto; Kay Uwe Wagner

In response to the ligand-mediated activation of cytokine receptors, cells decide whether to proliferate or to undergo differentiation. D-type Cyclins (Cyclin D1, D2, or D3) and their associated Cyclin-dependent kinases (CDK4, CDK6) connect signals from cytokines to the cell cycle machinery, and they propel cells through the G1 restriction point and into the S phase, after which growth factor stimulation is no longer essential to complete cell division. D-type Cyclins are upregulated in many human malignancies including breast cancer to promote an uncontrolled proliferation of cancer cells. After summarizing important aspects of the cytokine-mediated transcriptional regulation and the posttranslational modification of D-type Cyclins, this review will highlight the physiological significance of these cell cycle regulators during normal mammary gland development as well as the initiation and promotion of breast cancer. Although the vast majority of published reports focus almost exclusively on the role of Cyclin D1 in breast cancer, we summarize here previous and recent findings that demonstrate an important contribution of the remaining two members of this Cyclin family, in particular Cyclin D3, for the growth of ErbB2-associated breast cancer cells in humans and in mouse models. New data from genetically engineered models as well as the pharmacological inhibition of CDK4/6 suggest that targeting the combined functions of D-type Cyclins could be a suitable strategy for the treatment of ErbB2-positive and potentially other types of breast cancer.


Stem Cells | 2014

Critical Role of Jak2 in the Maintenance and Function of Adult Hematopoietic Stem Cells

Hajime Akada; Saeko Akada; Robert E. Hutchison; Kazuhito Sakamoto; Kay Uwe Wagner; Golam Mohi

Jak2, a member of the Janus kinase family of nonreceptor protein tyrosine kinases, is activated in response to a variety of cytokines, and functions in survival and proliferation of cells. An activating JAK2V617F mutation has been found in most patients with myeloproliferative neoplasms, and patients treated with Jak2 inhibitors show significant hematopoietic toxicities. However, the role of Jak2 in adult hematopoietic stem cells (HSCs) has not been clearly elucidated. Using a conditional Jak2 knockout allele, we have found that Jak2 deletion results in rapid loss of HSCs/progenitors leading to bone marrow failure and early lethality in adult mice. Jak2 deficiency causes marked impairment in HSC function, and the mutant HSCs are severely defective in reconstituting hematopoiesis in recipient animals. Jak2 deficiency also causes significant apoptosis and loss of quiescence in HSC‐enriched LSK (Lin−Sca‐1+c‐Kit+) cells. Jak2‐deficient LSK cells exhibit elevated reactive oxygen species levels and enhanced p38 MAPK activation. Mutant LSK cells also show defective Stat5, Erk, and Akt activation in response to thrombopoietin and stem cell factor. Gene expression analysis reveals significant downregulation of genes related to HSC quiescence and self‐renewal in Jak2‐deficient LSK cells. These data suggest that Jak2 plays a critical role in the maintenance and function of adult HSCs. Stem Cells 2014;32:1878–1889


Cancer Research | 2009

Targeting Janus Kinase 2 in Her2/neu-Expressing Mammary Cancer: Implications for Cancer Prevention and Therapy

Kazuhito Sakamoto; Wan Chi Lin; Aleata A. Triplett; Kay Uwe Wagner

The Janus kinase 2 (Jak2) is essential for normal mammary gland development, but this tyrosine kinase and its main effector, signal transducer and activator of transcription 5, are also active in a significant subset of human breast cancers. We have recently reported that Jak2 controls the expression and nuclear accumulation of cyclin D1. Because this particular D-type cyclin has been suggested to be a key mediator for ErbB2-associated mammary tumorigenesis, we deleted Jak2 from ErbB2-expressing mammary epithelial cells prior to tumor onset and in neoplastic cells to address whether this tyrosine kinase plays a role in the initiation as well as progression of mammary cancer. Similar to cyclin D1-deficient mice, the functional ablation of Jak2 protects against the onset of mammary tumorigenesis. In contrast, the deletion of Jak2 from neoplastic cells or the acute, ligand-inducible down-regulation of this tyrosine kinase in an orthotopic transplant model did not affect the growth and survival of cancer cells. The constitutive activation of ErbB2 signaling, which is an initial event in the formation of mammary cancer, was able to override the functional role of Jak2 in regulating the expression of Akt1 and cyclin D1. This might be a compensatory mechanism that explains why Jak2 is a relevant target for preventing the initiation but not the progression of ErbB2-associated mammary cancer.


Molecular and Cellular Biology | 2014

Stat5 regulates the phosphatidylinositol 3-Kinase/Akt1 pathway during mammary gland development and tumorigenesis

Jeffrey W. Schmidt; Barbara L. Wehde; Kazuhito Sakamoto; Aleata A. Triplett; Steven M. Anderson; Philip N. Tsichlis; Gustavo Leone; Kay Uwe Wagner

ABSTRACT Stat5 (signal transducer and activator of transcription 5) is an essential mediator of cytokine receptor signaling and plays important roles in the proliferation of alveolar progenitors and the survival of functionally differentiated epithelial cells in the mammary gland. A deregulated expression and activation of Stat5 leads to precocious alveolar development in the absence of pregnancy hormones, impaired mammary gland remodeling following the cessation of lactation, and mammary tumor formation. We reported previously that Stat5 induces the transcription of the Akt1 gene from a novel promoter. In this report, we provide experimental evidence that Akt1 is an essential mediator for the biological function of Stat5 as a survival factor. Additionally, Stat5 controls the expression of the regulatory and catalytic subunits of the phosphatidylinositol 3-kinase (PI3K) (p85α and p110α), thereby greatly augmenting signaling through the prosurvival PI3K/Akt pathway. In agreement with this model, we observed that the constitutive activation of Stat5 cooperates with the loss of function of the tumor suppressor PTEN by accelerating the formation of preneoplastic lesions and mammary tumors. The mammary gland-specific ablation of Stat5 is sufficient to prevent mammary carcinogenesis in a genuine mouse model for Cowden syndrome. Therefore, targeting the Jak2/Stat5 pathway might be a suitable strategy to prevent breast cancer in patients that carry a mutant PTEN allele.


Cancer Research | 2011

Cyclin D3 compensates for the loss of Cyclin D1 during ErbB2-induced mammary tumor initiation and progression

Qian Zhang; Kazuhito Sakamoto; Chengbao Liu; Aleata A. Triplett; Wan Chi Lin; Hallgeir Rui; Kay Uwe Wagner

Cyclin D1 regulates cell proliferation and is a candidate molecular target for breast cancer therapy. This study addresses whether Cyclin D1 is indispensable for ErbB2-associated mammary tumor initiation and progression using a breast cancer model in which this cell-cycle regulator can be genetically ablated prior to or after neoplastic transformation. Deficiency in Cyclin D1 delayed tumor onset but did not prevent the occurrence of mammary cancer in mice overexpressing wild-type ErbB2. The lack of Cyclin D1 was associated with a compensatory upregulation of Cyclin D3, which explains why the targeted downregulation of Cyclin D1 in established mammary tumors had no effect on cancer cell proliferation. Cyclin D1 and D3 are overexpressed in human breast cancer cell lines and primary invasive breast cancers, and Cyclin D3 frequently exceeded the expression of Cyclin D1 in ErbB2-positive cases. The simultaneous inhibition of both cyclins in mammary tumor cells reduced cancer cell proliferation in vitro and decreased the tumor burden in vivo. Collectively, the results of this study suggest that only the combined inhibition of Cyclin D1 and D3 might be a suitable strategy for breast cancer prevention and therapy.

Collaboration


Dive into the Kazuhito Sakamoto's collaboration.

Top Co-Authors

Avatar

Kay Uwe Wagner

Eppley Institute for Research in Cancer and Allied Diseases

View shared research outputs
Top Co-Authors

Avatar

Aleata A. Triplett

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey W. Schmidt

Eppley Institute for Research in Cancer and Allied Diseases

View shared research outputs
Top Co-Authors

Avatar

Barbara L. Wehde

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hallgeir Rui

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Kay-Uwe Wagner

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Qian Zhang

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bradley A. Creamer

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chengbao Liu

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Lothar Hennighausen

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge