Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuki Terauchi is active.

Publication


Featured researches published by Kazuki Terauchi.


The EMBO Journal | 2007

A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria

Taeko Nishiwaki; Yoshinori Satomi; Yohko Kitayama; Kazuki Terauchi; Reiko Kiyohara; Toshifumi Takao; Takao Kondo

The circadian phosphorylation cycle of the cyanobacterial clock protein KaiC has been reconstituted in vitro. The phosphorylation profiles of two phosphorylation sites in KaiC, serine 431 (S431) and threonine 432 (T432), revealed that the phosphorylation cycle contained four steps: (i) T432 phosphorylation; (ii) S431 phosphorylation to generate the double‐phosphorylated form of KaiC; (iii) T432 dephosphorylation; and (iv) S431 dephosphorylation. We then examined the effects of mutations introduced at one KaiC phosphorylation site on the intact phosphorylation site. We found that the product of each step in the phosphorylation cycle regulated the reaction in the next step, and that double phosphorylation converted KaiC from an autokinase to an autophosphatase, whereas complete dephosphorylation had the opposite effect. These mechanisms serve as the basis for cyanobacterial circadian rhythm generation. We also found that associations among KaiA, KaiB, and KaiC result from S431 phosphorylation, and these interactions would maintain the amplitude of the rhythm.


Proceedings of the National Academy of Sciences of the United States of America | 2007

ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria.

Kazuki Terauchi; Yohko Kitayama; Taeko Nishiwaki; Kumiko Miwa; Yoriko Murayama; Tokitaka Oyama; Takao Kondo

Self-sustainable oscillation of KaiC phosphorylation has been reconstituted in vitro, demonstrating that this cycle is the basic time generator of the circadian clock of cyanobacteria. Here we show that the ATPase activity of KaiC satisfies the characteristics of the circadian oscillation, the period length, and the temperature compensation. KaiC possesses extremely weak but stable ATPase activity (15 molecules of ATP per day), and the addition of KaiA and KaiB makes the activity oscillate with a circadian period in vitro. The ATPase activity of KaiC is inherently temperature-invariant, suggesting that temperature compensation of the circadian period could be driven by this simple biochemical reaction. Moreover, the activities of wild-type KaiC and five period-mutant proteins are directly proportional to their in vivo circadian frequencies, indicating that the ATPase activity defines the circadian period. Thus, we propose that KaiC ATPase activity constitutes the most fundamental reaction underlying circadian periodicity in cyanobacteria.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus

Hiroshi Ito; Michinori Mutsuda; Yoriko Murayama; Jun Tomita; Norimune Hosokawa; Kazuki Terauchi; Chieko Sugita; Mamoru Sugita; Takao Kondo; Hideo Iwasaki

In the unicellular cyanobacterium Synechococcus elongatus PCC 7942, essentially all promoter activities are under the control of the circadian clock under continuous light (LL) conditions. Here, we used high-density oligonucleotide arrays to explore comprehensive profiles of genome-wide Synechococcus gene expression in wild-type, kaiABC-null, and kaiC-overexpressor strains under LL and continuous dark (DD) conditions. In the wild-type strains, >30% of transcripts oscillated significantly in a circadian fashion, peaking at subjective dawn and dusk. Such circadian control was severely attenuated in kaiABC-null strains. Although it has been proposed that KaiC globally represses gene expression, our analysis revealed that dawn-expressed genes were up-regulated by kaiC-overexpression so that the clock was arrested at subjective dawn. Transfer of cells to DD conditions from LL immediately suppressed expression of most of the genes, while the clock kept even time in the absence of transcriptional feedback. Thus, the Synechococcus genome seems to be primarily regulated by light/dark cycles and is dramatically modified by the protein-based circadian oscillator.


Genes & Development | 2008

Dual KaiC-based oscillations constitute the circadian system of cyanobacteria

Yohko Kitayama; Taeko Nishiwaki; Kazuki Terauchi; Takao Kondo

In the cyanobacterium Synechococcus elongatus PCC 7942, the KaiA, KaiB, and KaiC proteins are essential for the generation of circadian rhythms. Both in vivo and in vitro, phosphorylation of KaiC is regulated positively by KaiA and negatively by KaiB and shows circadian rhythmicity. The autonomous circadian cycling of KaiC phosphorylation is thought to be the basic pacemaker of the circadian clock and to control genome-wide gene expression in cyanobacteria. In this study, we found that temperature-compensated circadian oscillations of gene expression persisted even when KaiC was arrested in the phosphorylated state due to kaiA overexpression. Moreover, two phosphorylation mutants showed transcriptional oscillation with a long period. In kaiA-overexpressing and phosphorylation-deficient strains, KaiC oscillated and transient overexpression of phosphorylation-deficient kaiC reset the phase of the rhythm. These results suggest that transcription- and translation-based oscillations in KaiC abundance are also important for circadian rhythm generation in cyanobacteria. Furthermore, at low temperature, cyanobacteria can show circadian rhythms only when both the KaiC phosphorylation cycle and the transcription and translation cycle are intact. Our findings indicate that multiple coupled oscillatory systems based on the biochemical properties of KaiC are important to maintain robust and precise circadian rhythms in cyanobacteria.


The EMBO Journal | 2011

Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution

Yoriko Murayama; Atsushi Mukaiyama; Keiko Imai; Yasuhiro Onoue; Akina Tsunoda; Atsushi Nohara; Tatsuro Ishida; Yuichiro Maéda; Kazuki Terauchi; Takao Kondo; Shuji Akiyama

The circadian clock in cyanobacteria persists even without the transcription/translation feedbacks proposed for eukaryotic systems. The period of the cyanobacterial clock is tuned to the circadian range by the ATPase activity of a clock protein known as KaiC. Here, we provide structural evidence on how KaiC ticks away 24 h while coupling the ATPase activity in its N‐terminal ring to the phosphorylation state in its C‐terminal ring. During the phosphorylation cycle, the C‐terminal domains of KaiC are repositioned in a stepwise manner to affect global expansion and contraction motions of the C‐terminal ring. Arg393 of KaiC has a critical function in expanding the C‐terminal ring and its replacement with Cys affects the temperature compensation of the period—a fundamental property of circadian clocks. The conformational ticking of KaiC observed here in solution serves as a timing cue for assembly/disassembly of other clock proteins (KaiA and KaiB), and is interlocked with its auto‐inhibitory ATPase underlying circadian periodicity of cyanobacteria.


Photochemistry and Photobiology | 2002

Regulation of cAMP-mediated photosignaling by a phytochrome in the cyanobacterium Anabaena cylindrica.

Masayuki Ohmori; Kazuki Terauchi; Shinobu Okamoto; Masakatu Watanabe

Changes in cellular adenosine 3′,5′‐cyclic monophosphate (cAMP) content induced by monochromatic light of various wavelengths were determined in the cyanobacterium Anabaena cylindrica. Irradiation with monochromatic red light caused a rapid decrease in cAMP content. In contrast, far‐red light caused a rapid increase in its content. The effects of red and far‐red light were reversible, suggesting the involvement of a prototype phytochrome as the photoreceptor for cAMP‐mediated light‐responsive signal transduction.


Plant and Cell Physiology | 2015

Loss of Cytochrome cM Stimulates Cyanobacterial Heterotrophic Growth in the Dark

Yuto Hiraide; Kenshiro Oshima; Takatomo Fujisawa; Kazuma Uesaka; Yuu Hirose; Ryoma Tsujimoto; Haruki Yamamoto; Shinobu Okamoto; Yasukazu Nakamura; Kazuki Terauchi; Tatsuo Omata; Kunio Ihara; Masahira Hattori; Yuichi Fujita

Although cyanobacteria are photoautotrophs, they have the capability for heterotrophic metabolism that enables them to survive in their natural habitat. However, cyanobacterial species that grow heterotrophically in the dark are rare. It remains largely unknown how cyanobacteria regulate heterotrophic activity. The cyanobacterium Leptolyngbya boryana grows heterotrophically with glucose in the dark. A dark-adapted variant dg5 isolated from the wild type (WT) exhibits enhanced heterotrophic growth in the dark. We sequenced the genomes of dg5 and the WT to identify the mutation(s) of dg5. The WT genome consists of a circular chromosome (6,176,364 bp), a circular plasmid pLBA (77,793 bp) and two linear plasmids pLBX (504,942 bp) and pLBY (44,369 bp). Genome comparison revealed three mutation sites. Phenotype analysis of mutants isolated from the WT by introducing these mutations individually revealed that the relevant mutation is a single adenine insertion causing a frameshift of cytM encoding Cyt c(M). The respiratory oxygen consumption of the cytM-lacking mutant grown in the dark was significantly higher than that of the WT. We isolated a cytM-lacking mutant, ΔcytM, from another cyanobacterium Synechocystis sp. PCC 6803, and ΔcytM grew in the dark with a doubling time of 33 h in contrast to no growth of the WT. The respiratory oxygen consumption of ΔcytM grown in the dark was about 2-fold higher than that of the WT. These results suggest a suppressive role(s) for Cyt cM in regulation of heterotrophic activity.


Scientific Reports | 2016

Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation.

Katsuaki Oyama; Chihiro Azai; Kaori Nakamura; Syun Tanaka; Kazuki Terauchi

The cyanobacterial circadian oscillator can be reconstituted in vitro by mixing three clock proteins, KaiA, KaiB and KaiC, with ATP. KaiC is the only protein with circadian rhythmic activities. In the present study, we tracked the complex formation of the three Kai proteins over time using blue native (BN) polyacrylamide gel electrophoresis (PAGE), in which proteins are charged with the anionic dye Coomassie brilliant blue (CBB). KaiC was separated as three bands: the KaiABC complex, KaiC hexamer and KaiC monomer. However, no KaiC monomer was observed using gel filtration chromatography and CBB-free native PAGE. These data indicate two conformational states of KaiC hexamer and show that the ground-state KaiC (gs-KaiC) is stable and competent-state KaiC (cs-KaiC) is labile and degraded into monomers by the binding of CBB. Repeated conversions from gs-KaiC to cs-KaiC were observed over 24 h using an in vitro reconstitution system. Phosphorylation of KaiC promoted the conversion from gs-KaiC to cs-KaiC. KaiA sustained the gs-KaiC state, and KaiB bound only cs-KaiC. An E77Q/E78Q-KaiC variant that lacked N-terminal ATPase activity remained in the gs-KaiC state. Taken together, ATP hydrolysis induces the formation of cs-KaiC and promotes the binding of KaiB, which is a trigger for circadian oscillations.


Scientific Reports | 2016

Structural characterization of the circadian clock protein complex composed of KaiB and KaiC by inverse contrast-matching small-angle neutron scattering

Masaaki Sugiyama; Hirokazu Yagi; Kentaro Ishii; Lionel Porcar; Anne L. Martel; Katsuaki Oyama; Masanori Noda; Yasuhiro Yunoki; Reiko Murakami; Rintaro Inoue; Nobuhiro Sato; Yojiro Oba; Kazuki Terauchi; Susumu Uchiyama; Koichi Kato

The molecular machinery of the cyanobacterial circadian clock consists of three proteins: KaiA, KaiB, and KaiC. Through interactions among the three Kai proteins, the phosphorylation states of KaiC generate circadian oscillations in vitro in the presence of ATP. Here, we characterized the complex formation between KaiB and KaiC using a phospho-mimicking mutant of KaiC, which had an aspartate substitution at the Ser431 phosphorylation site and exhibited optimal binding to KaiB. Mass-spectrometric titration data showed that the proteins formed a complex exclusively in a 6:6 stoichiometry, indicating that KaiB bound to the KaiC hexamer with strong positive cooperativity. The inverse contrast-matching technique of small-angle neutron scattering enabled selective observation of KaiB in complex with the KaiC mutant with partial deuteration. It revealed a disk-shaped arrangement of the KaiB subunits on the outer surface of the KaiC C1 ring, which also serves as the interaction site for SasA, a histidine kinase that operates as a clock-output protein in the regulation of circadian transcription. These data suggest that cooperatively binding KaiB competes with SasA with respect to interaction with KaiC, thereby promoting the synergistic release of this clock-output protein from the circadian oscillator complex.


Plant Physiology | 2018

Soft X-ray imaging of cellular carbon and nitrogen distributions in heterocystous cyanobacterium

Takahiro Teramoto; Chihiro Azai; Kazuki Terauchi; Masashi Yoshimura; Toshiaki Ohta

Soft x-ray microscopy is a new method developed to determine cellular carbon and nitrogen concentrations in vivo. Soft x-ray microscopy (SXM) is a minimally invasive technique for single-cell high-resolution imaging as well as the visualization of intracellular distributions of light elements such as carbon, nitrogen, and oxygen. We used SXM to observe photosynthesis and nitrogen fixation in the filamentous cyanobacterium Anabaena sp. PCC 7120, which can form heterocysts during nitrogen starvation. Statistical and spectroscopic analyses from SXM images around the K-absorption edge of nitrogen revealed a significant difference in the carbon-to-nitrogen (C/N) ratio between vegetative cells and heterocysts. Application of this analysis to soft x-ray images of Anabaena sp. PCC 7120 revealed inhomogenous C/N ratios in the cells. Furthermore, soft x-ray tomography of Anabaena sp. PCC 7120 revealed differing cellular C/N ratios, indicating different carbon and nitrogen distributions between vegetative cells and heterocysts in three dimensions.

Collaboration


Dive into the Kazuki Terauchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge