Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shinobu Okamoto is active.

Publication


Featured researches published by Shinobu Okamoto.


DNA Research | 2007

Complete Genomic Structure of the Bloom-forming Toxic Cyanobacterium Microcystis aeruginosa NIES-843

Takakazu Kaneko; Nobuyoshi Nakajima; Shinobu Okamoto; Iwane Suzuki; Yuuhiko Tanabe; Masanori Tamaoki; Yasukazu Nakamura; Fumie Kasai; Akiko Watanabe; Kumiko Kawashima; Yoshie Kishida; Akiko Ono; Yoshimi Shimizu; Chika Takahashi; Chiharu Minami; Tsunakazu Fujishiro; Mitsuyo Kohara; Midori Katoh; Naomi Nakazaki; Shinobu Nakayama; Manabu Yamada; Satoshi Tabata; Makoto M. Watanabe

Abstract The nucleotide sequence of the complete genome of a cyanobacterium, Microcystis aeruginosa NIES-843, was determined. The genome of M. aeruginosa is a single, circular chromosome of 5 842 795 base pairs (bp) in length, with an average GC content of 42.3%. The chromosome comprises 6312 putative protein-encoding genes, two sets of rRNA genes, 42 tRNA genes representing 41 tRNA species, and genes for tmRNA, the B subunit of RNase P, SRP RNA, and 6Sa RNA. Forty-five percent of the putative protein-encoding sequences showed sequence similarity to genes of known function, 32% were similar to hypothetical genes, and the remaining 23% had no apparent similarity to reported genes. A total of 688 kb of the genome, equivalent to 11.8% of the entire genome, were composed of both insertion sequences and miniature inverted-repeat transposable elements. This is indicative of a plasticity of the M. aeruginosa genome, through a mechanism that involves homologous recombination mediated by repetitive DNA elements. In addition to known gene clusters related to the synthesis of microcystin and cyanopeptolin, novel gene clusters that may be involved in the synthesis and modification of toxic small polypeptides were identified. Compared with other cyanobacteria, a relatively small number of genes for two component systems and a large number of genes for restriction-modification systems were notable characteristics of the M. aeruginosa genome.


Nucleic Acids Research | 2010

CyanoBase: the cyanobacteria genome database update 2010

Mitsuteru Nakao; Shinobu Okamoto; Mitsuyo Kohara; Tsunakazu Fujishiro; Takatomo Fujisawa; Shusei Sato; Satoshi Tabata; Takakazu Kaneko; Yasukazu Nakamura

CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in various formats with other tools, seamlessly.


DNA Research | 2010

Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39.

Takatomo Fujisawa; Rei Narikawa; Shinobu Okamoto; Shigeki Ehira; Hidehisa Yoshimura; Iwane Suzuki; Tatsuru Masuda; Mari Mochimaru; Shinichi Takaichi; Koichiro Awai; Mitsuo Sekine; Hiroshi Horikawa; Isao Yashiro; Seiha Omata; Hiromi Takarada; Yoko Katano; Hiroki Kosugi; Satoshi Tanikawa; Kazuko Ohmori; Naoki Sato; Masahiko Ikeuchi; Nobuyuki Fujita; Masayuki Ohmori

A filamentous non-N2-fixing cyanobacterium, Arthrospira (Spirulina) platensis, is an important organism for industrial applications and as a food supply. Almost the complete genome of A. platensis NIES-39 was determined in this study. The genome structure of A. platensis is estimated to be a single, circular chromosome of 6.8 Mb, based on optical mapping. Annotation of this 6.7 Mb sequence yielded 6630 protein-coding genes as well as two sets of rRNA genes and 40 tRNA genes. Of the protein-coding genes, 78% are similar to those of other organisms; the remaining 22% are currently unknown. A total 612 kb of the genome comprise group II introns, insertion sequences and some repetitive elements. Group I introns are located in a protein-coding region. Abundant restriction-modification systems were determined. Unique features in the gene composition were noted, particularly in a large number of genes for adenylate cyclase and haemolysin-like Ca2+-binding proteins and in chemotaxis proteins. Filament-specific genes were highlighted by comparative genomic analysis.


Nucleic Acids Research | 2014

CyanoBase and RhizoBase: databases of manually curated annotations for cyanobacterial and rhizobial genomes

Takatomo Fujisawa; Shinobu Okamoto; Toshiaki Katayama; Mitsuteru Nakao; Hidehisa Yoshimura; Hiromi Kajiya-Kanegae; Sumiko Yamamoto; Chiyoko Yano; Yuka Yanaka; Hiroko Maita; Takakazu Kaneko; Satoshi Tabata; Yasukazu Nakamura

To understand newly sequenced genomes of closely related species, comprehensively curated reference genome databases are becoming increasingly important. We have extended CyanoBase (http://genome.microbedb.jp/cyanobase), a genome database for cyanobacteria, and newly developed RhizoBase (http://genome.microbedb.jp/rhizobase), a genome database for rhizobia, nitrogen-fixing bacteria associated with leguminous plants. Both databases focus on the representation and reusability of reference genome annotations, which are continuously updated by manual curation. Domain experts have extracted names, products and functions of each gene reported in the literature. To ensure effectiveness of this procedure, we developed the TogoAnnotation system offering a web-based user interface and a uniform storage of annotations for the curators of the CyanoBase and RhizoBase databases. The number of references investigated for CyanoBase increased from 2260 in our previous report to 5285, and for RhizoBase, we perused 1216 references. The results of these intensive annotations are displayed on the GeneView pages of each database. Advanced users can also retrieve this information through the representational state transfer-based web application programming interface in an automated manner.


DNA Research | 2007

Group 3 sigma factor gene, sigJ, a key regulator of desiccation tolerance, regulates the synthesis of extracellular polysaccharide in cyanobacterium Anabaena sp. strain PCC 7120

Hidehisa Yoshimura; Shinobu Okamoto; Yoichi Tsumuraya; Masayuki Ohmori

Abstract The changes in the expression of sigma factor genes during dehydration in terrestrial Nostoc HK-01 and aquatic Anabaena PCC 7120 were determined. The expression of the sigJ gene in terrestrial Nostoc HK-01, which is homologous to sigJ (alr0277) in aquatic Anabaena PCC 7120, was significantly induced in the mid-stage of dehydration. We constructed a higher-expressing transformant of the sigJ gene (HE0277) in Anabaena PCC 7120, and the transformant acquired desiccation tolerance. The results of Anabaena oligonucleotide microarray experiments showed that a comparatively large number of genes relating to polysaccharide biosynthesis were upregulated in the HE0277 cells. The extracellular polysaccharide released into the culture medium of the HE0277 cells was as much as 3.2-fold more than that released by the control cells. This strongly suggests that the group 3 sigma factor gene sigJ is fundamental and conducive to desiccation tolerance in these cyanobacteria.


Journal of Biomedical Semantics | 2014

BioHackathon series in 2011 and 2012: penetration of ontology and linked data in life science domains

Toshiaki Katayama; Mark D. Wilkinson; Kiyoko F. Aoki-Kinoshita; Shuichi Kawashima; Yasunori Yamamoto; Atsuko Yamaguchi; Shinobu Okamoto; Shin Kawano; Jin Dong Kim; Yue Wang; Hongyan Wu; Yoshinobu Kano; Hiromasa Ono; Hidemasa Bono; Simon Kocbek; Jan Aerts; Yukie Akune; Erick Antezana; Kazuharu Arakawa; Bruno Aranda; Joachim Baran; Jerven T. Bolleman; Raoul J. P. Bonnal; Pier Luigi Buttigieg; Matthew Campbell; Yi An Chen; Hirokazu Chiba; Peter J. A. Cock; K. Bretonnel Cohen; Alexandru Constantin

The application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data. In this review, we briefly introduce the themes covered by these sub-groups. The observations made, conclusions drawn, and software development projects that emerged from these activities are discussed.


Microbes and Environments | 2012

Complete genome sequence of Bradyrhizobium sp. S23321: insights into symbiosis evolution in soil oligotrophs.

Takashi Okubo; Takahiro Tsukui; Hiroko Maita; Shinobu Okamoto; Kenshiro Oshima; Takatomo Fujisawa; Akihiro Saito; Hiroyuki Futamata; Reiko Hattori; Yumi Shimomura; Shin Haruta; Sho Morimoto; Yong Wang; Yoriko Sakai; Masahira Hattori; Shin-Ichi Aizawa; Kenji V. P. Nagashima; Sachiko Masuda; Tsutomu Hattori; Akifumi Yamashita; Zhihua Bao; Masahito Hayatsu; Hiromi Kajiya-Kanegae; Ikuo Yoshinaga; Kazunori Sakamoto; Koki Toyota; Mitsuteru Nakao; Mitsuyo Kohara; Mizue Anda; Rieko Niwa

Bradyrhizobium sp. S23321 is an oligotrophic bacterium isolated from paddy field soil. Although S23321 is phylogenetically close to Bradyrhizobium japonicum USDA110, a legume symbiont, it is unable to induce root nodules in siratro, a legume often used for testing Nod factor-dependent nodulation. The genome of S23321 is a single circular chromosome, 7,231,841 bp in length, with an average GC content of 64.3%. The genome contains 6,898 potential protein-encoding genes, one set of rRNA genes, and 45 tRNA genes. Comparison of the genome structure between S23321 and USDA110 showed strong colinearity; however, the symbiosis islands present in USDA110 were absent in S23321, whose genome lacked a chaperonin gene cluster (groELS3) for symbiosis regulation found in USDA110. A comparison of sequences around the tRNA-Val gene strongly suggested that S23321 contains an ancestral-type genome that precedes the acquisition of a symbiosis island by horizontal gene transfer. Although S23321 contains a nif (nitrogen fixation) gene cluster, the organization, homology, and phylogeny of the genes in this cluster were more similar to those of photosynthetic bradyrhizobia ORS278 and BTAi1 than to those on the symbiosis island of USDA110. In addition, we found genes encoding a complete photosynthetic system, many ABC transporters for amino acids and oligopeptides, two types (polar and lateral) of flagella, multiple respiratory chains, and a system for lignin monomer catabolism in the S23321 genome. These features suggest that S23321 is able to adapt to a wide range of environments, probably including low-nutrient conditions, with multiple survival strategies in soil and rhizosphere.


Photochemical and Photobiological Sciences | 2004

Photoresponsive cAMP signal transduction in cyanobacteria

Masayuki Ohmori; Shinobu Okamoto

The molecular mechanism of cAMP-mediated signal transduction from light reception to the physiological response via regulation of gene expression in cyanobacteria is described based on our recent works. Cyanobacteria are known as the organisms that acquired oxygen-evolving, higher plant type photosynthesis. We have found that the cellular cAMP level in the filamentous cyanobacteria Anabaena was oppositely regulated by red and far-red light, i.e., decreasing and increasing, respectively, suggesting that a phytochrome-like red/far-red photoreversible pigment regulates the activity of a certain adenylate cyclase. On the other hand, in the unicellular cyanobacterium Synechocystis cellular cAMP content was increased by blue light irradiation, which led to stimulation of cell motility. The cAMP signaling pathway is known to play an important role in the regulation of various biological activities by altering enzyme activities or controlling gene expression levels in both prokaryotes and eukaryotes. We have isolated genes for adenylate cyclases and cAMP receptor proteins and characterized their molecular properties. Disruption of these genes resulted in the loss of cell motility. It is concluded that the light signal was transmitted by cAMP signal cascade in cyanobacteria.


Photochemistry and Photobiology | 2004

A Phytochrome-like Protein AphC Triggers the cAMP Signaling Induced by Far-red Light in the Cyanobacterium Anabaena sp. Strain PCC7120¶

Shinobu Okamoto; Masahiro Kasahara; Asako Kamiya; Yuka Nakahira; Masayuki Ohmori

Abstract In the filamentous, nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, red light (630 nm) decreased, whereas far-red light (720 nm) increased cellular adenosine 3′,5′-cyclic monophosphate (cAMP) content. To find a red and far-red light photoreceptor that triggers the cAMP signal cascade, we disrupted 10 open reading frame having putative chromophore-binding GAF domains. The response of the cellluar cAMP concentration to red and far-red light in each open reading frame disruptant was determined. It was found that only the mutant of the gene all2699 failed to respond to far-red light. The open reading frame named as aphC encoded a protein with 920 amino acids including GAF domains similar to those involved in Cph2, a photoreceptor of Synechocystis sp. PCC6803. To determine which adenylate cyclase (AC) is responsible for far-red light signal, we disrupted all AC genes and found that CyaC was the candidate. The enzymatic activity of CyaC might be controlled by a far-red light photoreceptor through the phosphotransfer reaction. The site-specific mutant of the Asp59 residue of the receiver (R1) domain of CyaC lost its light-response capability. It was suggested that the far-red light signal was received by AphC and then transferred to the N-terminal response regulator domain of CyaC. Then its catalytic activity was stimulated, which increased the cellular cAMP concentration and drove the subsequent signal transduction cascade.


Photochemistry and Photobiology | 2002

Regulation of cAMP-mediated photosignaling by a phytochrome in the cyanobacterium Anabaena cylindrica.

Masayuki Ohmori; Kazuki Terauchi; Shinobu Okamoto; Masakatu Watanabe

Changes in cellular adenosine 3′,5′‐cyclic monophosphate (cAMP) content induced by monochromatic light of various wavelengths were determined in the cyanobacterium Anabaena cylindrica. Irradiation with monochromatic red light caused a rapid decrease in cAMP content. In contrast, far‐red light caused a rapid increase in its content. The effects of red and far‐red light were reversible, suggesting the involvement of a prototype phytochrome as the photoreceptor for cAMP‐mediated light‐responsive signal transduction.

Collaboration


Dive into the Shinobu Okamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takatomo Fujisawa

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge