Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuki Yasuda is active.

Publication


Featured researches published by Kazuki Yasuda.


Nature Genetics | 2008

Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus

Kazuki Yasuda; Kazuaki Miyake; Yukio Horikawa; Kazuo Hara; Haruhiko Osawa; Hiroto Furuta; Yushi Hirota; Hiroyuki Mori; Anna Maria Jönsson; Yoshifumi Sato; Kazuya Yamagata; Yoshinori Hinokio; Heyao Wang; Toshihito Tanahashi; Naoto Nakamura; Yoshitomo Oka; Naoko Iwasaki; Yasuhiko Iwamoto; Yuichiro Yamada; Yutaka Seino; Hiroshi Maegawa; Atsunori Kashiwagi; Jun Takeda; Eiichi Maeda; Hyoung Doo Shin; Young Min Cho; Kyong Soo Park; Hong Kyu Lee; Maggie C.Y. Ng; Ronald C.W. Ma

We carried out a multistage genome-wide association study of type 2 diabetes mellitus in Japanese individuals, with a total of 1,612 cases and 1,424 controls and 100,000 SNPs. The most significant association was obtained with SNPs in KCNQ1, and dense mapping within the gene revealed that rs2237892 in intron 15 showed the lowest P value (6.7 × 10−13, odds ratio (OR) = 1.49). The association of KCNQ1 with type 2 diabetes was replicated in populations of Korean, Chinese and European ancestry as well as in two independent Japanese populations, and meta-analysis with a total of 19,930 individuals (9,569 cases and 10,361 controls) yielded a P value of 1.7 × 10−42 (OR = 1.40; 95% CI = 1.34–1.47) for rs2237892. Among control subjects, the risk allele of this polymorphism was associated with impairment of insulin secretion according to the homeostasis model assessment of β-cell function or the corrected insulin response. Our data thus implicate KCNQ1 as a diabetes susceptibility gene in groups of different ancestries.


Nature Medicine | 2012

KIF5B-RET fusions in lung adenocarcinoma

Takashi Kohno; Hitoshi Ichikawa; Yasushi Totoki; Kazuki Yasuda; Masaki Hiramoto; Takao Nammo; Hiromi Sakamoto; Koji Tsuta; Koh Furuta; Yoko Shimada; Reika Iwakawa; Hideaki Ogiwara; Takahiro Oike; Masato Enari; Aaron J. Schetter; Hirokazu Okayama; Aage Haugen; Vidar Skaug; Suenori Chiku; Itaru Yamanaka; Yasuhito Arai; Shun-ichi Watanabe; Ikuo Sekine; Seishi Ogawa; Curtis C. Harris; Hitoshi Tsuda; Teruhiko Yoshida; Jun Yokota; Tatsuhiro Shibata

We identified in-frame fusion transcripts of KIF5B (the kinesin family 5B gene) and the RET oncogene, which are present in 1–2% of lung adenocarcinomas (LADCs) from people from Japan and the United States, using whole-transcriptome sequencing. The KIF5B-RET fusion leads to aberrant activation of RET kinase and is considered to be a new driver mutation of LADC because it segregates from mutations or fusions in EGFR, KRAS, HER2 and ALK, and a RET tyrosine kinase inhibitor, vandetanib, suppresses the fusion-induced anchorage-independent growth activity of NIH3T3 cells.


Nature Genetics | 2010

A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B

Toshimasa Yamauchi; Kazuo Hara; Shiro Maeda; Kazuki Yasuda; Atsushi Takahashi; Momoko Horikoshi; Masahiro Nakamura; Hayato Fujita; Niels Grarup; Stéphane Cauchi; Daniel P.K. Ng; Ronald C.W. Ma; Tatsuhiko Tsunoda; Michiaki Kubo; Hirotaka Watada; Hiroshi Maegawa; Miki Okada-Iwabu; Masato Iwabu; Nobuhiro Shojima; Hyoung Doo Shin; Gitte Andersen; Daniel R. Witte; Torben Jørgensen; Torsten Lauritzen; Annelli Sandbæk; Torben Hansen; Toshihiko Ohshige; Shintaro Omori; Ikuo Saito; Kohei Kaku

We conducted a genome-wide association study of type 2 diabetes (T2D) using 459,359 SNPs in a Japanese population with a three-stage study design (stage 1, 4,470 cases and 3,071 controls; stage 2, 2,886 cases and 3,087 controls; stage 3, 3,622 cases and 2,356 controls). We identified new associations in UBE2E2 on chromosome 3 and in C2CD4A-C2CD4B on chromosome 15 at genome-wide significant levels (rs7612463 in UBE2E2, combined P = 2.27 × 10−9; rs7172432 in C2CD4A-C2CD4B, combined P = 3.66 × 10−9). The association of these two loci with T2D was replicated in other east Asian populations. In the European populations, the C2CD4A-C2CD4B locus was significantly associated with T2D, and a combined analysis of all populations gave P = 8.78 × 10−14, whereas the UBE2E2 locus did not show association to T2D. In conclusion, we identified two new loci at UBE2E2 and C2CD4A-C2CD4B associated with susceptibility to T2D.


The Journal of Clinical Endocrinology and Metabolism | 2008

Replication of Genome-Wide Association Studies of Type 2 Diabetes Susceptibility in Japan

Yukio Horikawa; Kazuaki Miyake; Kazuki Yasuda; Mayumi Enya; Yushi Hirota; Kazuya Yamagata; Yoshinori Hinokio; Yoshitomo Oka; Naoko Iwasaki; Yasuhiko Iwamoto; Yuichiro Yamada; Yutaka Seino; Hiroshi Maegawa; Atsunori Kashiwagi; Ken Yamamoto; Katsushi Tokunaga; Jun Takeda; Masato Kasuga

BACKGROUND In Europeans and populations of European origin, several groups have recently identified novel type 2 diabetes susceptibility genes, including FTO, SLC30A8, HHEX, CDKAL1, CDKN2B, and IGF2BP2, none of which were in the list of functional candidates. OBJECTIVE AND DESIGN The aim of this study was to replicate in a Japanese population previously identified associations of single nucleotide polymorphisms (SNPs) within 10 candidate loci with type 2 diabetes using a relatively large sample size: 1921 subjects with type 2 diabetes and 1622 normal controls. RESULTS A total of 15 SNPs were genotyped. Eight SNPs in five loci were found to be associated with type 2 diabetes: rs3802177 [odds ratio (OR) = 1.16 (95% confidence interval (CI) 1.05-1.27); P = 4.5 x 10(-3)] in SLC30A8; rs1111875 [OR = 1.27 (95% CI 1.14-1.40); P = 1.4 x 10(-5)] and rs7923837 [OR = 1.27 (95% CI 1.13-1.43); P = 1.0 x 10(-4)] in HHEX; rs10811661 [OR = 1.27 (95% CI 1.15-1.40); P = 1.9 x 10(-6)] in CDKN2B; rs4402960 [OR = 1.23 (95% CI 1.11-1.36); P = 8.1 x 10(-5)] and rs1470579 [OR = 1.18 (95% CI 1.07-1.31); P = 8.3 x 10(-4)] in IGF2BP2; and rs7754840 [OR = 1.28 (95% CI 1.17-1.41); P = 4.5 x 10(-7)] and rs7756992 [OR = 1.27 (95% CI 1.15-1.40); P = 9.8 x 10(-7)] in CDKAL1. The first and second strongest associations were found at variants in CDKAL1 and CDKN2B, both of which are involved in the regenerative capacity of pancreatic beta-cells. CONCLUSION Some of these variants represent common type 2 diabetes-susceptibility genes in both Japanese and Europeans.


Human Molecular Genetics | 2014

Genome-wide association study identifies three novel loci for type 2 diabetes

Kazuo Hara; Hayato Fujita; Todd A. Johnson; Toshimasa Yamauchi; Kazuki Yasuda; Momoko Horikoshi; Chen Peng; Cheng Hu; Ronald C.W. Ma; Minako Imamura; Minoru Iwata; Tatsuhiko Tsunoda; Takashi Morizono; Nobuhiro Shojima; Wing Yee So; Ting F. Leung; Patrick Kwan; Rong Zhang; Jie Wang; Weihui Yu; Hiroshi Maegawa; Hiroshi Hirose; Kohei Kaku; Chikako Ito; Hirotaka Watada; Yasushi Tanaka; Kazuyuki Tobe; Atsunori Kashiwagi; Ryuzo Kawamori; Weiping Jia

Although over 60 loci for type 2 diabetes (T2D) have been identified, there still remains a large genetic component to be clarified. To explore unidentified loci for T2D, we performed a genome-wide association study (GWAS) of 6 209 637 single-nucleotide polymorphisms (SNPs), which were directly genotyped or imputed using East Asian references from the 1000 Genomes Project (June 2011 release) in 5976 Japanese patients with T2D and 20 829 nondiabetic individuals. Nineteen unreported loci were selected and taken forward to follow-up analyses. Combined discovery and follow-up analyses (30 392 cases and 34 814 controls) identified three new loci with genome-wide significance, which were MIR129-LEP [rs791595; risk allele = A; risk allele frequency (RAF) = 0.080; P = 2.55 × 10(-13); odds ratio (OR) = 1.17], GPSM1 [rs11787792; risk allele = A; RAF = 0.874; P = 1.74 × 10(-10); OR = 1.15] and SLC16A13 (rs312457; risk allele = G; RAF = 0.078; P = 7.69 × 10(-13); OR = 1.20). This study demonstrates that GWASs based on the imputation of genotypes using modern reference haplotypes such as that from the 1000 Genomes Project data can assist in identification of new loci for common diseases.


Journal of Human Genetics | 2008

Association of TCF7L2 polymorphisms with susceptibility to type 2 diabetes in 4,087 Japanese subjects

Kazuaki Miyake; Yukio Horikawa; Kazuo Hara; Kazuki Yasuda; Haruhiko Osawa; Hiroto Furuta; Yushi Hirota; Kazuya Yamagata; Yoshinori Hinokio; Yoshitomo Oka; Naoko Iwasaki; Yasuhiko Iwamoto; Yuichiro Yamada; Yutaka Seino; Hiroshi Maegawa; Atsunori Kashiwagi; Ken Yamamoto; Katsushi Tokunaga; Jun Takeda; Hideichi Makino; Kishio Nanjo; Takashi Kadowaki; Kasuga M

AbstractTranscription factor 7-like 2 (TCF7L2) has been shown to be associated with type 2 diabetes mellitus in multiple ethnic groups. Regarding the Asian population, Horikoshi et al. (Diabetologia 50:747–751, 2007) and Hayashi et al. (Diabetologia 50:980–984, 2007) reported that single nucleotide polymorphisms (SNPs) in TCF7L2 were associated with type 2 diabetes in the Japanese population, while contradictory results were reported for Han Chinese populations. The aim of this study was to investigate the associations of the TCF7L2 gene with type 2 diabetes using a relatively large sample size: 2,214 Japanese individuals with type 2 diabetes and 1,873 normal controls. The minor alleles of rs7903146, rs11196205, and rs12255372 showed significant associations with type 2 diabetes (OR = 1.48, P = 2.7 × 10−4; OR = 1.39, P = 4.6 × 10−4; OR = 1.70, P = 9.8 × 10−5, respectively) in the combined sample sets. However, neither rs11196218 nor rs290487 showed a significant association. These results indicate that TCF7L2 is an important susceptibility gene for type 2 diabetes in the Japanese population.


Clinical Cancer Research | 2014

Druggable Oncogene Fusions in Invasive Mucinous Lung Adenocarcinoma

Takashi Nakaoku; Koji Tsuta; Hitoshi Ichikawa; Kouya Shiraishi; Hiromi Sakamoto; Masato Enari; Koh Furuta; Yoko Shimada; Hideaki Ogiwara; Shun-ichi Watanabe; Hiroshi Nokihara; Kazuki Yasuda; Masaki Hiramoto; Takao Nammo; Teruhide Ishigame; Aaron J. Schetter; Hirokazu Okayama; Curtis C. Harris; Young Hak Kim; Michiaki Mishima; Jun Yokota; Teruhiko Yoshida; Takashi Kohno

Purpose: To identify druggable oncogenic fusions in invasive mucinous adenocarcinoma (IMA) of the lung, a malignant type of lung adenocarcinoma in which KRAS mutations frequently occur. Experimental Design: From an IMA cohort of 90 cases, consisting of 56 cases (62%) with KRAS mutations and 34 cases without (38%), we conducted whole-transcriptome sequencing of 32 IMAs, including 27 cases without KRAS mutations. We used the sequencing data to identify gene fusions, and then performed functional analyses of the fusion gene products. Results: We identified oncogenic fusions that occurred mutually exclusively with KRAS mutations: CD74-NRG1, SLC3A2-NRG1, EZR-ERBB4, TRIM24-BRAF, and KIAA1468-RET. NRG1 fusions were present in 17.6% (6/34) of KRAS-negative IMAs. The CD74-NRG1 fusion activated HER2:HER3 signaling, whereas the EZR-ERBB4 and TRIM24-BRAF fusions constitutively activated the ERBB4 and BRAF kinases, respectively. Signaling pathway activation and fusion-induced anchorage-independent growth/tumorigenicity of NIH3T3 cells expressing these fusions were suppressed by tyrosine kinase inhibitors approved for clinical use. Conclusions: Oncogenic fusions act as driver mutations in IMAs without KRAS mutations, and thus represent promising therapeutic targets for the treatment of such IMAs. Clin Cancer Res; 20(12); 3087–93. ©2014 AACR.


Human Molecular Genetics | 2012

A single nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations

Minako Imamura; Shiro Maeda; Toshimasa Yamauchi; Kazuo Hara; Kazuki Yasuda; Takashi Morizono; Atsushi Takahashi; Momoko Horikoshi; Masahiro Nakamura; Hayato Fujita; Tatsuhiko Tsunoda; Michiaki Kubo; Hirotaka Watada; Hiroshi Maegawa; Miki Okada-Iwabu; Masato Iwabu; Nobuhiro Shojima; Toshihiko Ohshige; Shintaro Omori; Minoru Iwata; Hiroshi Hirose; Kohei Kaku; Chikako Ito; Yasushi Tanaka; Kazuyuki Tobe; Atsunori Kashiwagi; Ryuzo Kawamori; Masato Kasuga; Naoyuki Kamatani; Yusuke Nakamura

To identify a novel susceptibility locus for type 2 diabetes, we performed an imputation-based, genome-wide association study (GWAS) in a Japanese population using newly obtained imputed-genotype data for 2 229 890 single-nucleotide polymorphisms (SNPs) estimated from previously reported, directly genotyped GWAS data in the same samples (stage 1: 4470 type 2 diabetes versus 3071 controls). We directly genotyped 43 new SNPs with P-values of <10(-4) in a part of stage-1 samples (2692 type 2 diabetes versus 3071 controls), and the associations of validated SNPs were evaluated in another 11 139 Japanese individuals (stage 2: 7605 type 2 diabetes versus 3534 controls). Combined meta-analysis using directly genotyped data for stages 1 and 2 revealed that rs515071 in ANK1 and rs7656416 near MGC21675 were associated with type 2 diabetes in the Japanese population at the genome-wide significant level (P < 5 × 10(-8)). The association of rs515071 was also observed in European GWAS data (combined P for all populations = 6.14 × 10(-10)). Rs7656416 was in linkage disequilibrium to rs6815464, which had recently been identified as a top signal in a meta-analysis of East Asian GWAS for type 2 diabetes (r(2) = 0.76 in stage 2). The association of rs7656416 with type 2 diabetes disappeared after conditioning on rs6815464. These results indicate that the ANK1 locus is a new, common susceptibility locus for type 2 diabetes across different ethnic groups. The signal of association was weaker in the directly genotyped data, so the improvement in signal indicates the importance of imputation in this particular case.


Journal of Human Genetics | 2009

Construction of a prediction model for type 2 diabetes mellitus in the Japanese population based on 11 genes with strong evidence of the association.

Kazuaki Miyake; Woosung Yang; Kazuo Hara; Kazuki Yasuda; Yukio Horikawa; Haruhiko Osawa; Hiroto Furuta; Maggie C.Y. Ng; Yushi Hirota; Hiroyuki Mori; Keisuke Ido; Kazuya Yamagata; Yoshinori Hinokio; Yoshitomo Oka; Naoko Iwasaki; Yasuhiko Iwamoto; Yuichiro Yamada; Yutaka Seino; Hiroshi Maegawa; Atsunori Kashiwagi; Heyao Wang; Toshihito Tanahashi; Naoto Nakamura; Jun Takeda; Eiichi Maeda; Ken Yamamoto; Katsushi Tokunaga; Ronald C.W. Ma; Wing Yee So; Juliana C.N. Chan

Prediction of the disease status is one of the most important objectives of genetic studies. To select the genes with strong evidence of the association with type 2 diabetes mellitus, we validated the associations of the seven candidate loci extracted in our earlier study by genotyping the samples in two independent sample panels. However, except for KCNQ1, the association of none of the remaining seven loci was replicated. We then selected 11 genes, KCNQ1, TCF7L2, CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, HHEX, GCKR, HNF1B, KCNJ11 and PPARG, whose associations with diabetes have already been reported and replicated either in the literature or in this study in the Japanese population. As no evidence of the gene–gene interaction for any pair of the 11 loci was shown, we constructed a prediction model for the disease using the logistic regression analysis by incorporating the number of the risk alleles for the 11 genes, as well as age, sex and body mass index as independent variables. Cumulative risk assessment showed that the addition of one risk allele resulted in an average increase in the odds for the disease of 1.29 (95% CI=1.25–1.33, P=5.4 × 10−53). The area under the receiver operating characteristic curve, an estimate of the power of the prediction model, was 0.72, thereby indicating that our prediction model for type 2 diabetes may not be so useful but has some value. Incorporation of data from additional risk loci is most likely to increase the predictive power.


Drug Metabolism and Disposition | 2009

Substrate-Dependent Functional Alterations of Seven CYP2C9 Variants Found in Japanese Subjects

Keiko Maekawa; Noriko Harakawa; Emiko Sugiyama; Masahiro Tohkin; Su-Ryang Kim; Nahoko Kaniwa; Noriko Katori; Ryuichi Hasegawa; Kazuki Yasuda; Kei Kamide; Toshiyuki Miyata; Yoshiro Saito; Jun-ichi Sawada

CYP2C9 is a polymorphic enzyme that metabolizes a number of clinically important drugs. In this study, catalytic activities of seven alleles found in Japanese individuals, CYP2C9*3 (I359L), *13 (L90P), *26 (T130R), *28 (Q214L), *30 (A477T), *33 (R132Q), and *34 (R335Q), were assessed using three substrates (diclofenac, losartan, and glimepiride). When expressed in a baculovirus-insect cell system, the holo and total (apo and holo) CYP2C9 protein expression levels were similar among the wild type (CYP2C9.1) and six variants except for CYP2C9.13. A large part of CYP2C9.13 was present in the apo form P420. Compared with CYP2C9.1, all variants except for CYP2C9.34 exhibited substrate-dependent changes in Km, Vmax, and intrinsic clearance (Vmax/Km). For diclofenac 4′-hydroxylation, the intrinsic clearance was decreased markedly (by >80%) in CYP2C9.13, CYP2C9.30, and CYP2C9.33 and variably (63–76%) in CYP2C9.3, CYP2C9.26, and CYP2C9.28 due to increased Km and/or decreased Vmax values. For losartan oxidation, CYP2C9.13 and CYP2C9.28 showed 2.5- and 1.8-fold higher Km values, respectively, and all variants except for CYP2C9.34 showed >77% lower Vmax and intrinsic clearance values. For glimepiride hydroxylation, the Km of CYP2C9.13 was increased 7-fold, and the Vmax values of all variants significantly decreased, resulting in reductions in the intrinsic clearance by >80% in CYP2C9.3, CYP2C9.13, CYP2C9.26, and CYP2C9.33 and by 56 to 75% in CYP2C9.28 and CYP2C9.30. These findings suggest the necessity for careful administration of losartan and glimepiride to patients bearing these six alleles.

Collaboration


Dive into the Kazuki Yasuda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitsuhiko Noda

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Shimada

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge