Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuko Handa is active.

Publication


Featured researches published by Kazuko Handa.


Journal of Biological Chemistry | 1998

GM3-enriched Microdomain Involved in Cell Adhesion and Signal Transduction through Carbohydrate-Carbohydrate Interaction in Mouse Melanoma B16 Cells

Kazuhisa Iwabuchi; Soichiro Yamamura; Alessandro Prinetti; Kazuko Handa; Sen-itiroh Hakomori

Mouse melanoma B16 cells are characterized by the predominant presence of ganglioside GM3 and adhere to lactosylceramide- or Gg3-coated plates through interaction of GM3 with lactosylceramide or Gg3, whereby not only adhesion but also spreading and enhancement of cell motility occur (Kojima, N., Hakomori, S. (1991) J. Biol. Chem. 266, 17552–17558). We now report that the adhesion process is based essentially on a glycosphingolipid-enriched microdomain (GEM) at the B16 cell surface, since >90% of GM3 present in the original cells is found in GEM, and GEM is also enriched in several signal transducer molecules, e.g. c-Src, Ras, Rho, and focal adhesion kinase (FAK). GEM was isolated as a low density membranous fraction by homogenization of B16 cells in lysis buffer under two different conditions (i.e. buffer containing 1% Triton X-100, or hypertonic sodium carbonate without detergent), followed by sucrose density gradient centrifugation. A close association of GM3 with c-Src, Rho, and FAK was indicated by co-immunoprecipitation of GM3 present in GEM by anti-GM3 monoclonal antibody DH2, followed by Western blotting with antibodies directed to these transducer molecules. The following data indicate that GEM is a structural and functional unit for initiation of GM3-dependent cell adhesion coupled with signal transduction. 1) Tyrosine phosphorylation in FAK was greatly enhanced in B16 cells adhered to Gg3-coated plates but was minimal in cells adhered to GM3-coated, GlcCer-coated, or noncoated plates. 2) GTP loading on Ras and Rho increased significantly when cells were adhered to Gg3-coated plates, compared with GM3-coated, GlcCer-coated, or noncoated plates. Since Ras and Rho are closely associated with GM3 in GEM, cell adhesion/stimulation through GM3 in GEM may induce activation of Ras and Rho through enhanced GTP binding.


Biochemical and Biophysical Research Communications | 1991

Selectin GMP-140 (CD62; PADGEM) binds to sialosyl-Lea and sialosyl-Lex, and sulfated glycans modulate this binding

Kazuko Handa; Edward Nudelman; Mark R. Stroud; Tanri Shiozawa; Sen-itiroh Hakomori

GMP-140 (CD62; PADGEM) is a member of the selectin family expressed highly at the surface of platelets and endothelial cells by agonists such as thrombin or phorbol esters. Previous studies indicate that the lectin domain of GMP-140 recognizes sialosyl-Le(x) (SLex) and to a lesser extent Le(x) (Polley MJ, et al., Proc Natl Acad Sci USA 88:6224, 1991). We now report that GMP-140 binds to sialosyl Lea (SLea) and to SLex, and that degree of binding to SLea is greater than that to SLex under our experimental conditions. Binding of activated platelets to SLea or SLex was inhibited to various degrees in the presence of sulfated glycans, suggesting that sulfated glycans induce conformational change in the lectin domain of GMP-140 and modulates its binding affinity to SLea and SLex.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor

Seon-Joo Yoon; Ken-ichi Nakayama; Toshiyuki Hikita; Kazuko Handa; Sen-itiroh Hakomori

Epidermal growth factor receptor (EGFR) at membrane microdomains plays an essential role in the growth control of epidermal cells, including cancer cells derived therefrom. Ligand-dependent activation of EGFR tyrosine kinase is known to be inhibited by ganglioside GM3, but to a much lesser degree by other glycosphingolipids. However, the mechanism of the inhibitory effect of GM3 on EGFR tyrosine kinase has been ambiguous. The mechanism is now defined by binding of N-linked glycan having multiple GlcNAc termini to GM3 through carbohydrate-to-carbohydrate interaction, based on the following data: (i) EGFR (molecular mass, ≈170 kDa) has N-linked glycan with GlcNAc termini, as probed by mAb (J1) or lectin (GS-II); (ii) GS-II-bound EGFR also bound to anti-EGFR Ab as well as to GM3-coated beads; (iii) GM3 inhibitory effect on EGFR tyrosine kinase was abrogated in vitro by coincubation with glycan having multiple GlcNAc termini and in cell culture in situ incubated with the same glycan; and (iv) cells treated with swainsonine, which increased expression of complex-type and hybrid-type glycans with GlcNAc termini, displayed higher inhibition of EGFR kinase by GM3 than swainsonine-untreated control cells. A similar effect was observed with 1-deoxymannojirimycin, which increased hybrid-type structure in addition to major accumulation of high mannose-type glycan. These findings indicate that N-linked glycan with GlcNAc termini linked to EGFR is the target to interact with GM3, causing inhibition of EGF-induced EGFR tyrosine kinase.


Biochemical and Biophysical Research Communications | 1992

Inhibition of selectin-dependent tumor cell adhesion to endothelial cells and platelets by blocking O-glycosylation of these cells

Naoya Kojima; Kazuko Handa; Walter H. Newman; Sen-itiroh Hakomori

Expression of sialosyl-Le(x) (SLe(x)) and sialosyl-Le(a) (SLe(a)) on tumor cell lines HL60, Colo205, and U937 was greatly suppressed by application of benzyl-alpha-GalNAc for inhibition of O-linked carbohydrate chain extension, which resulted in reduced adhesion of tumor cells to activated endothelial cells or platelets mediated by ELAM-1 (E-selectin) or GMP-140 (P-selectin). Inhibitors or modifiers of N-glycosylation had no effect on expression of SLe(x) or SLe(a) in these tumor cells. These findings suggest the possibility that targeting of O-glycosylation inhibitors or modifiers to tumor cells may effectively suppress metastatic potential.


FEBS Letters | 2002

Glycosphingolipid-dependent cross-talk between glycosynapses interfacing tumor cells with their host cells: essential basis to define tumor malignancy

Sen-itiroh Hakomori; Kazuko Handa

Status of tumor progression (either remaining in situ, or becoming invasive/metastatic) may be defined largely by subtle interactions (‘cross‐talk’) in a microenvironment formed by interfacing tumor cell and host cell membrane domains (termed ‘glycosynapses’) involved in glycosylation‐dependent cell adhesion and signaling. Functional roles of tumor‐associated gangliosides, organized in glycosynapses of three types of tumor cell lines, are discussed. Gangliosides function as adhesion receptors or as ‘sensors’ that can be stimulated by antibodies, with consequent activation of signal transducers leading to enhanced motility and invasiveness.


Journal of Biological Chemistry | 2007

Ganglioside GM2-Tetraspanin CD82 Complex Inhibits Met and Its Cross-talk with Integrins, Providing a Basis for Control of Cell Motility through Glycosynapse

Adriane R. Todeschini; Jose Nilson Dos Santos; Kazuko Handa; Sen-itiroh Hakomori

Glycosphingolipids (GSLs) at the cell surface membrane are associated or complexed with signal transducers (Src family kinases and small G-proteins), tetraspanins, growth factor receptors, and integrins. Such organizational framework, defining GSL-modulated or -dependent cell adhesion, motility, and growth, is termed “glycosynapse” (Hakomori, S., and Handa, K. (2002) FEBS Lett. 531, 88–92; Hakomori, S. (2004) Ann. Braz. Acad. Sci. 76, 553–572). We describe here the functional organization of the glycosynaptic microdomain, and the mechanisms for control of cell motility and invasiveness, in normal bladder epithelial HCV29 cells versus highly invasive bladder cancer YTS1 cells, both derived from transitional epithelia. (i) Ganglioside GM2, but not GM3 or globoside, interacted specifically with tetraspanin CD82, and such a complex inhibited hepatocyte growth factor (HGF)-induced activation of Met tyrosine kinase in a dose-dependent manner. (ii) Depletion of GM2 in HCV29 cells by treatment with d-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4), or reduction of CD82 expression by RNA interference, significantly enhanced HGF-induced Met tyrosine kinase and cell motility. (iii) In contrast, YTS1 cells, lacking CD82, displayed HGF-independent activation of Met tyrosine kinase and high cell motility. Transfection of the CD82 gene to YTS1 inhibited HGF dose-dependent Met tyrosine kinase activity and cell motility, due to formation of the GM2-CD82 complex. (iv) Adhesion of YTS1 or YTS1/CD82 cells to laminin-5-coated plates, as compared with noncoated plates, strongly enhanced Met activation, and the degree of activation was further increased in association with GSL depletion by P4. Laminin-5-dependent Met activation was minimal in HCV29 cells. These findings indicate that GSL, particularly GM2, forms a complex with CD82, and that such complex interacts with Met and thereby inhibits HGF-induced Met tyrosine kinase activity, as well as integrin to Met cross-talk.


Journal of Biological Chemistry | 2005

Effect of Ganglioside and Tetraspanins in Microdomains on Interaction of Integrins with Fibroblast Growth Factor Receptor

Marcos S. Toledo; Erika Suzuki; Kazuko Handa; Sen-itiroh Hakomori

The functional interaction (“cross-talk”) of integrins with growth factor receptors has become increasingly clear as a basic mechanism in cell biology, defining cell growth, adhesion, and motility. However, no studies have addressed the microdomains in which such interaction takes place nor the effect of gangliosides and tetraspanins (TSPs) on such interaction. Growth of human embryonal WI38 fibroblasts is highly dependent on fibroblast growth factor (FGF) and its receptor (FGFR), stably associated with ganglioside GM3 and TSPs CD9 and CD81 in the ganglioside-enriched microdomain. Adhesion and motility of these cells are mediated by laminin-5 ((LN5) and fibronectin (FN) through α3β1 and α5β1 integrin receptors, respectively. When WI38 cells or its transformant VA13 cells were adhered to LN5 or FN, α3β1 or α5β1 were stimulated, giving rise to signaling to activate FGFR through tyrosine phosphorylation and inducing cell proliferation under serum-free conditions without FGF addition. Types and intensity of signaling during the time course differed significantly depending on the type of integrin stimulated (α3β1 versus α5β1), and on cell type (WI38 versus VA13). Such effect of cross-talk between integrins and FGFR was influenced strongly by the change of GM3 and TSPs. (i) GM3 depletion by P4 caused enhanced tyrosine phosphorylation of FGFR and Akt followed by MAPK activation, without significant change of ceramide level. GM3 depletion also caused enhanced co-immunoprecipitation of FGFR with α3/α5/β1 and of these integrins with CD9/CD81. (ii) LN5- or FN-dependent proliferation of both WI38 and VA13 was strongly enhanced by GM3 depletion and by CD9/CD81 knockdown by siRNA. Thus, integrin-FGFR cross-talk is strongly influenced by GM3 and/or TSPs within the ganglioside-enriched microdomain.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway.

Adriane Regina Todeschini; Jose Nilson Dos Santos; Kazuko Handa; Sen-itiroh Hakomori

Ganglioside GM2 complexed with tetraspanin CD82 in glycosynaptic microdomain of HCV29 and other epithelial cells inhibits hepatocyte growth factor-induced cMet tyrosine kinase. In addition, adhesion of HCV29 cells to extracellular matrix proteins also activates cMet kinase through “cross-talk” of integrins with cMet, leading to inhibition of cell motility and growth. Present studies indicate that cell motility and growth are greatly influenced by expression of GM2, GM3, or GM2/GM3 complexes, which affect cMet kinase activity of various types of cells, based on the following series of observations: (i) Cells expressing CD82, cultured with GM2 and GM3 cocoated on silica nanospheres, displayed stronger and more consistent motility inhibition than those cultured with GM2 or GM3 alone or with other glycosphingolipids. (ii) GM2-GM3, in the presence of Ca2+ form a heterodimer, as evidenced by electrospray ionization (ESI) mass spectrometry and by specific reactivity with mAb 8E11, directed to GM2/GM3 dimer structure. (iii) Cells expressing cMet and CD82 were characterized by enhanced motility associated with HGF-induced cMet activation. Both cMet and motility were strongly inhibited by culturing cells with GM2/GM3 dimer coated on nanospheres. (iv) Adhesion of HCV29 or YTS-1/CD82 cells to laminin-5-coated plate activated cMet kinase in the absence of HGF, whereas GM2/GM3 dimer inhibited adhesion-induced cMet kinase activity and inhibited cell motility. (v) Inhibited cell motility as in i, iii, and iv was restored to normal level by addition of mAb 8E11, which blocks interaction of GM2/GM3 dimer with CD82. Signaling through Src and MAP kinases is activated or inhibited in close association with cMet kinase, in response to GM2/GM3 dimer interaction with CD82. Thus, a previously uncharacterized GM2/GM3 heterodimer complexed with CD82 inhibits cell motility through CD82-cMet or integrin-cMet pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Specific glycosphingolipids mediate epithelial-to-mesenchymal transition of human and mouse epithelial cell lines

Feng Guan; Kazuko Handa; Sen-itiroh Hakomori

Epithelial-to-mesenchymal cell transition (EMT) is a basic process in embryonic development and cancer progression. The present study demonstrates involvement of glycosphingolipids (GSLs) in the EMT process by using normal murine mammary gland NMuMG, human normal bladder HCV29, and human mammary carcinoma MCF7 cells. Treatment of these cells with d-threo-1-(3′,4′-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (EtDO-P4), the glucosylceramide (GlcCer) synthase inhibitor, which depletes all GSLs derived from GlcCer, (i) down-regulated expression of a major epithelial cell marker, E-cadherin; (ii) up-regulated expression of mesenchymal cell markers vimentin, fibronectin, and N-cadherin; (iii) enhanced haptotactic cell motility; and (iv) converted epithelial to fibroblastic morphology. These changes also were induced in these cell lines with TGF-β, which is a well-documented EMT inducer. A close association between specific GSL changes and EMT processes induced by EtDO-P4 or TGF-β is indicated by the following findings: (i) The enhanced cell motility of EtDO-P4-treated cells was abrogated by exogenous addition of GM2 or Gg4, but not GM1 or GM3, in all 3 cell lines. (ii) TGF-β treatment caused changes in the GSL composition of cells. Notably, Gg4 or GM2 was depleted or reduced in NMuMG, and GM2 was reduced in HCV29. (iii) Exogenous addition of Gg4 inhibited TGF-β-induced changes of morphology, motility, and levels of epithelial and mesenchymal markers. These observations indicate that specific GSLs play key roles in defining phenotypes associated with EMT and its reverse process (i.e., mesenchymal-to-epithelial transition).


Journal of Biological Chemistry | 2003

Sphingosine-dependent Protein Kinase-1, Directed to 14-3-3, Is Identified as the Kinase Domain of Protein Kinase Cδ

Akikazu Hamaguchi; Erika Suzuki; Kimie Murayama; Tsutomu Fujimura; Toshiyuki Hikita; Kazuhisa Iwabuchi; Kazuko Handa; Donald A. Withers; Shane C. Masters; Haian Fu; Sen-itiroh Hakomori

Some protein kinases are known to be activated by d-erythro-sphingosine (Sph) or N,N-dimethyl-d-erythro-sphingosine (DMS), but not by ceramide, Sph-1-P, other sphingolipids, or phospholipids. Among these, a specific protein kinase that phosphorylates Ser60, Ser59, or Ser58 of 14-3-3β, 14-3-3η, or 14-3-3ζ, respectively, was termed “sphingosine-dependent protein kinase-1” (SDK1) (Megidish, T., Cooper, J., Zhang, L., Fu, H., and Hakomori, S. (1998) J. Biol. Chem. 273, 21834–21845). We have now identified SDK1 as a protein having the C-terminal half kinase domain of protein kinase Cδ (PKCδ) based on the following observations. (i) Large-scale preparation and purification of proteins showing SDK1 activity from rat liver (by six steps of chromatography) gave a final fraction with an enhanced level of an ∼40-kDa protein band. This fraction had SDK1 activity ∼50,000-fold higher than that in the initial extract. (ii) This protein had ∼53% sequence identity to the Ser/Thr kinase domain of PKCδ based on peptide mapping using liquid chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry data. (iii) A search for amino acid homology based on the BLAST algorithm indicated that the only protein with high homology to the ∼40-kDa band is the kinase domain of PKCδ. The kinase activity of PKCδ did not depend on Sph or DMS; rather, it was inhibited by these sphingoid bases, i.e. PKCδ did not display any SDK1 activity. However, strong SDK1 activity became detectable when PKCδ was incubated with caspase-3, which releases the ∼40-kDa kinase domain. PKCδ and SDK1 showed different lipid requirements and substrate specificity, although both kinase activities were inhibited by common PKC inhibitors. The high susceptibility of SDK1 to Sph and DMS accounts for their important modulatory role in signal transduction.

Collaboration


Dive into the Kazuko Handa's collaboration.

Top Co-Authors

Avatar

Sen-itiroh Hakomori

Pacific Northwest Diabetes Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sen-Itiroh Hakomori

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Donald A. Withers

Pacific Northwest Diabetes Research Institute

View shared research outputs
Top Co-Authors

Avatar

Mark R. Stroud

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Mary Ellen K. Salyan

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naoya Kojima

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akihiro Ito

Pacific Northwest Diabetes Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge