Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuko Hasegawa is active.

Publication


Featured researches published by Kazuko Hasegawa.


Nature Genetics | 2009

Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease.

Wataru Satake; Yuko Nakabayashi; Ikuko Mizuta; Yushi Hirota; Chiyomi Ito; Michiaki Kubo; Takahisa Kawaguchi; Tatsuhiko Tsunoda; Masahiko Watanabe; Atsushi Takeda; Hiroyuki Tomiyama; Kenji Nakashima; Kazuko Hasegawa; Fumiya Obata; Takeo Yoshikawa; Hideshi Kawakami; Saburo Sakoda; Mitsutoshi Yamamoto; Nobutaka Hattori; Miho Murata; Yusuke Nakamura; Tatsushi Toda

To identify susceptibility variants for Parkinsons disease (PD), we performed a genome-wide association study (GWAS) and two replication studies in a total of 2,011 cases and 18,381 controls from Japan. We identified a new susceptibility locus on 1q32 (P = 1.52 × 10−12) and designated this as PARK16, and we also identified BST1 on 4p15 as a second new risk locus (P = 3.94 × 10−9). We also detected strong associations at SNCA on 4q22 (P = 7.35 × 10−17) and LRRK2 on 12q12 (P = 2.72 × 10−8), both of which are implicated in autosomal dominant forms of parkinsonism. By comparing results of a GWAS performed on individuals of European ancestry, we identified PARK16, SNCA and LRRK2 as shared risk loci for PD and BST1 and MAPT as loci showing population differences. Our results identify two new PD susceptibility loci, show involvement of autosomal dominant parkinsonism loci in typical PD and suggest that population differences contribute to genetic heterogeneity in PD.


Annals of Neurology | 2002

A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2–q13.1

Manabu Funayama; Kazuko Hasegawa; Hisayuki Kowa; Masaaki Saito; Shoji Tsuji; Fumiya Obata

We performed genomewide linkage analysis of a Japanese family with autosomal dominant parkinsonism, which exhibits clinical features compatible with those of common Parkinsons disease. Parametric two‐point linkage analysis yielded a highest log odds (LOD) score of 4.32 at D12S345 (12p11.21). Parametric multipoint linkage analysis of the 13.6cM interval around this marker yielded LOD scores almost uniformly of >4.0 with a Zmax of 4.71 at D12S85 (12q12). Haplotype analysis detected two obligate recombination events at D12S1631 and D12S339 and defined the disease‐associated haplotype in the 13.6cM interval in 12p11.2–q13.1. This haplotype was shared by all the patients and by some unaffected carriers, suggesting that disease penetration in this family is incomplete. This low penetrance suggests that environmental or other genetic factors modify expression of the disease. Nonparametric two‐point and multipoint linkage analyses, which are penetrance‐independent, yielded Zmax LOD scores of 14.2 and 24.9 at D12S345, respectively, strongly supporting the mapping of the parkinsonism locus in this family to 12p11.23–q13.11. This chromosome region is different from any known locus for hereditary parkinsonism, in keeping with the unique genetic features of the parkinsonism in this family. The nomenclature of PARK8 was assigned to the new locus.


Science Translational Medicine | 2012

Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells

Naohiro Egawa; Shiho Kitaoka; Kayoko Tsukita; Motoko Naitoh; Kazutoshi Takahashi; Takuya Yamamoto; Fumihiko Adachi; Takayuki Kondo; Keisuke Okita; Isao Asaka; Takashi Aoi; Akira Watanabe; Yasuhiro Yamada; Asuka Morizane; Jun Takahashi; Takashi Ayaki; Hidefumi Ito; Katsuhiro Yoshikawa; Satoko Yamawaki; Shigehiko Suzuki; Dai Watanabe; Hiroyuki Hioki; Takeshi Kaneko; Kouki Makioka; Koichi Okamoto; Hiroshi Takuma; Akira Tamaoka; Kazuko Hasegawa; Takashi Nonaka; Masato Hasegawa

Anacardic acid attenuates mutant TDP-43–associated abnormalities in motor neurons derived from ALS patient–specific induced pluripotent stem cells. A Stepping Stone to ALS Drug Screening Amyotrophic lateral sclerosis (ALS) is an untreatable disorder in which the motor neurons degenerate, resulting in paralysis and death. Induced pluripotent stem cell (iPSC) technology makes it possible to analyze motor neurons from patients with ALS and to use them for screening new candidate drugs. In new work, Egawa et al. obtained motor neurons by inducing differentiation of iPSC lines derived from several patients with familial ALS. These patients carried disease-causing mutations in the gene encoding Tar DNA binding protein-43 (TDP-43). The ALS motor neurons in culture recapitulated cellular and molecular abnormalities associated with ALS. For example, the authors found that mutant TDP-43 in the ALS motor neurons perturbed RNA metabolism and that the motor neurons were more vulnerable to cellular stressors such as arsenite. The researchers then used the ALS motor neurons in a drug screening assay and identified a compound called anacardic acid, a histone acetyltransferase inhibitor, that could reverse some of the ALS phenotypes observed in the motor neurons. The new work provides an encouraging step toward using motor neurons generated from iPSCs derived from ALS patients to learn more about what triggers the death of motor neurons in this disease and to identify new candidate drugs that may be able to slow or reverse the devastating loss of motor neurons. Amyotrophic lateral sclerosis (ALS) is a late-onset, fatal disorder in which the motor neurons degenerate. The discovery of new drugs for treating ALS has been hampered by a lack of access to motor neurons from ALS patients and appropriate disease models. We generate motor neurons from induced pluripotent stem cells (iPSCs) from familial ALS patients, who carry mutations in Tar DNA binding protein-43 (TDP-43). ALS patient–specific iPSC–derived motor neurons formed cytosolic aggregates similar to those seen in postmortem tissue from ALS patients and exhibited shorter neurites as seen in a zebrafish model of ALS. The ALS motor neurons were characterized by increased mutant TDP-43 protein in a detergent-insoluble form bound to a spliceosomal factor SNRPB2. Expression array analyses detected small increases in the expression of genes involved in RNA metabolism and decreases in the expression of genes encoding cytoskeletal proteins. We examined four chemical compounds and found that a histone acetyltransferase inhibitor called anacardic acid rescued the abnormal ALS motor neuron phenotype. These findings suggest that motor neurons generated from ALS patient–derived iPSCs may provide a useful tool for elucidating ALS disease pathogenesis and for screening drug candidates.


The EMBO Journal | 2008

Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila

Yuzuru Imai; Stephan Gehrke; Hua-Qin Wang; Ryosuke Takahashi; Kazuko Hasegawa; Etsuro Oota; Bingwei Lu

Dominant mutations in leucine‐rich repeat kinase 2 (LRRK2) are the most frequent molecular lesions so far found in Parkinsons disease (PD), an age‐dependent neurodegenerative disorder affecting dopaminergic (DA) neuron. The molecular mechanisms by which mutations in LRRK2 cause DA degeneration in PD are not understood. Here, we show that both human LRRK2 and the Drosophila orthologue of LRRK2 phosphorylate eukaryotic initiation factor 4E (eIF4E)‐binding protein (4E‐BP), a negative regulator of eIF4E‐mediated protein translation and a key mediator of various stress responses. Although modulation of the eIF4E/4E‐BP pathway by LRRK2 stimulates eIF4E‐mediated protein translation both in vivo and in vitro, it attenuates resistance to oxidative stress and survival of DA neuron in Drosophila. Our results suggest that chronic inactivation of 4E‐BP by LRRK2 with pathogenic mutations deregulates protein translation, eventually resulting in age‐dependent loss of DA neurons.


Annals of Neurology | 2005

An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family

Manabu Funayama; Kazuko Hasegawa; Etsuro Ohta; Noriko Kawashima; Masaru Komiyama; Hisayuki Kowa; Shoji Tsuji; Fumiya Obata

We detected a missense mutation in the kinase domain of the LRRK2 gene in members with autosomal dominant Parkinsons disease of the Japanese family (the Sagamihara family) who served as the basis for the original defining of the PARK8 Parkinsons disease locus. The results of the Sagamihara family, in combination with the unique pathological features characterized by pure nigral degeneration without Lewy bodies, provided us with valuable information for elucidating the protein structure–pathogenesis relationship for the gene product of LRRK2. We did not detect this mutation or other known mutations of the LRRK2 gene in Japanese patients with sporadic Parkinsons disease. Ann Neurol 2005


The New England Journal of Medicine | 2013

Mutations in COQ2 in familial and sporadic multiple-system atrophy the multiple-system atrophy research collaboration

Jun Mitsui; Takashi Matsukawa; Hiroyuki Ishiura; Yoko Fukuda; Yaeko Ichikawa; Hidetoshi Date; Budrul Ahsan; Yasuo Nakahara; Yoshio Momose; Yuji Takahashi; Atsushi Iwata; Jun Goto; Yorihiro Yamamoto; Makiko Komata; Katsuhiko Shirahige; Kenju Hara; Akiyoshi Kakita; Mitsunori Yamada; Hitoshi Takahashi; Osamu Onodera; Masatoyo Nishizawa; Hiroshi Takashima; Ryozo Kuwano; Hirohisa Watanabe; Mizuki Ito; Gen Sobue; Hiroyuki Soma; Ichiro Yabe; Hidenao Sasaki; Masashi Aoki

BACKGROUND Multiple-system atrophy is an intractable neurodegenerative disease characterized by autonomic failure in addition to various combinations of parkinsonism, cerebellar ataxia, and pyramidal dysfunction. Although multiple-system atrophy is widely considered to be a nongenetic disorder, we previously identified multiplex families with this disease, which indicates the involvement of genetic components. METHODS In combination with linkage analysis, we performed whole-genome sequencing of a sample obtained from a member of a multiplex family in whom multiple-system atrophy had been diagnosed on autopsy. We also performed mutational analysis of samples from members of five other multiplex families and from a Japanese series (363 patients and two sets of controls, one of 520 persons and one of 2383 persons), a European series (223 patients and 315 controls), and a North American series (172 patients and 294 controls). On the basis of these analyses, we used a yeast complementation assay and measured enzyme activity of parahydroxybenzoate-polyprenyl transferase. This enzyme is encoded by the gene COQ2 and is essential for the biosynthesis of coenzyme Q10. Levels of coenzyme Q10 in lymphoblastoid cells and brain tissue were measured on high-performance liquid chromatography. RESULTS We identified a homozygous mutation (M78V-V343A/M78V-V343A) and compound heterozygous mutations (R337X/V343A) in COQ2 in two multiplex families. Furthermore, we found that a common variant (V343A) and multiple rare variants in COQ2, all of which are functionally impaired, are associated with sporadic multiple-system atrophy. The V343A variant was exclusively observed in the Japanese population. CONCLUSIONS Functionally impaired variants of COQ2 were associated with an increased risk of multiple-system atrophy in multiplex families and patients with sporadic disease, providing evidence of a role of impaired COQ2 activities in the pathogenesis of this disease. (Funded by the Japan Society for the Promotion of Science and others.).


Neurology | 2007

Zonisamide improves motor function in Parkinson disease: a randomized, double-blind study.

Miho Murata; Kazuko Hasegawa; Ichiro Kanazawa

Objective: To evaluate the efficacy, safety and tolerability of daily doses of 25, 50, and 100 mg of zonisamide (ZNS) administered as adjunctive treatment in patients with Parkinson disease (PD). Methods: We conducted a multicenter, randomized, double-blind, parallel-treatment, placebo-controlled study in Japan. Patients with PD who showed insufficient response to levodopa treatment were given placebo for 2 weeks and then treated for 12 weeks with 25, 50, or 100 mg/day of ZNS or placebo, in addition to levodopa, followed by a 2-week dose-reduction period. The primary endpoint was change from baseline in the total score of the Unified Parkinsons Disease Rating Scale (UPDRS) Part III at the final assessment point. Secondary endpoints included changes from baseline in total daily “off” time; total scores of UPDRS Parts I, II, and IV; and Modified Hoehn and Yahr Scale score. Safety analysis was based on the incidence of adverse events. Results: There was significant improvement in the primary endpoint in the 25-mg and 50-mg groups vs placebo. The duration of “off” time was significantly reduced in the 50-mg and 100-mg groups vs placebo. Dyskinesia was not increased in ZNS groups. The incidence of adverse effects was similar between the 25-mg, 50-mg, and placebo groups but higher in the 100-mg group. Conclusions: Zonisamide is safe, effective and well tolerated at 25 to 100 mg/day as an adjunctive treatment in patients with Parkinson disease.


Lancet Neurology | 2010

Efficacy and safety of leuprorelin in patients with spinal and bulbar muscular atrophy (JASMITT study): a multicentre, randomised, double-blind, placebo-controlled trial

Masahisa Katsuno; Haruhiko Banno; Keisuke Suzuki; Yu Takeuchi; Motoshi Kawashima; Ichiro Yabe; Hidenao Sasaki; Masashi Aoki; Mitsuya Morita; Imaharu Nakano; Kazuaki Kanai; Shoichi Ito; Kinya Ishikawa; Hidehiro Mizusawa; Tomotaka Yamamoto; Shoji Tsuji; Kazuko Hasegawa; Takayoshi Shimohata; Masatoyo Nishizawa; Hiroaki Miyajima; Fumio Kanda; Yasuhiro Watanabe; Kenji Nakashima; Akira Tsujino; Taro Yamashita; Makoto Uchino; Yasushi Fujimoto; Fumiaki Tanaka; Gen Sobue

BACKGROUND Spinal and bulbar muscular atrophy is a hereditary motor neuron disease caused by the expansion of a polyglutamine tract in the androgen receptor. At present there are no treatments for spinal and bulbar muscular atrophy, although leuprorelin suppressed the accumulation of pathogenic androgen receptors in a phase 2 trial. We aimed to assess the efficacy and safety of leuprorelin for spinal and bulbar muscular atrophy. METHODS The Japan SBMA Interventional Trial for TAP-144-SR (JASMITT) was a 48-week, randomised, double-blind, placebo-controlled trial done at 14 hospitals between August, 2006, and March, 2008. Patients with spinal and bulbar muscular atrophy were randomly assigned (1:1) by minimisation to subcutaneous 11.25 mg leuprorelin or identical placebo every 12 weeks. Patients and investigators were masked to treatment allocation. The primary endpoint was pharyngeal barium residue, which indicates incomplete bolus clearance, measured at week 48 by videofluorography. All patients who were randomly assigned and who were assessed with videofluorography at least once were included in the analyses. This study is registered with the JMACCT clinical trials registry, number JMA-IIA00009, and the UMIN clinical trials registry, number UMIN000000465. FINDINGS 204 patients were randomly assigned and 199 started treatment: 100 with leuprorelin and 99 with placebo. At week 48, the pharyngeal barium residue after initial swallowing had changed by -5.1% (SD 21.0) in the leuprorelin group and by 0.2% (18.2) in the placebo group (difference between groups -5.3%; 95% CI -10.8 to 0.3; p=0.063). The mean difference in pharyngeal barium residue after piecemeal deglutition at week 48 was -3.2% (-6.4 to 0.0; p=0.049), but there was no significant difference between the groups after covariate adjustment for the baseline data (-4.1 to 1.6; p=0.392). In a predefined subgroup analysis, leuprorelin treatment was associated with a greater reduction in barium residue after initial swallowing than was placebo in patients with a disease duration less than 10 years (difference between groups -9.8, -17.1 to -2.5; p=0.009). There were no significant differences in the number of drug-related adverse events between groups (57 of 100 in the leuprorelin group and 54 of 99 in the placebo group; p=0.727). INTERPRETATION 48 weeks of treatment with leuprorelin did not show significant effects on swallowing function in patients with spinal and bulbar muscular atrophy, although it was well tolerated. Disease duration might influence the efficacy of leuprorelin and thus further clinical trials with sensitive outcome measures should be done in subpopulations of patients. FUNDING Large Scale Clinical Trial Network Project, Japan and Takeda Pharmaceuticals.


Lancet Neurology | 2015

CHCHD2 mutations in autosomal dominant late-onset Parkinson's disease: a genome-wide linkage and sequencing study

Manabu Funayama; Kenji Ohe; Taku Amo; Norihiko Furuya; Junji Yamaguchi; Shinji Saiki; Yuanzhe Li; Kotaro Ogaki; Maya Ando; Hiroyo Yoshino; Hiroyuki Tomiyama; Kenya Nishioka; Kazuko Hasegawa; Hidemoto Saiki; Wataru Satake; Kaoru Mogushi; Ryogen Sasaki; Yasumasa Kokubo; Shigeki Kuzuhara; Tatsushi Toda; Yoshikuni Mizuno; Yasuo Uchiyama; Kinji Ohno; Nobutaka Hattori

BACKGROUND Identification of causative genes in mendelian forms of Parkinsons disease is valuable for understanding the cause of the disease. We did genetic studies in a Japanese family with autosomal dominant Parkinsons disease to identify novel causative genes. METHODS We did a genome-wide linkage analysis on eight affected and five unaffected individuals from a family with autosomal dominant Parkinsons disease (family A). Subsequently, we did exome sequencing on three patients and whole-genome sequencing on one patient in family A. Variants were validated by Sanger sequencing in samples from patients with autosomal dominant Parkinsons disease, patients with sporadic Parkinsons disease, and controls. Participants were identified from the DNA bank of the Comprehensive Genetic Study on Parkinsons Disease and Related Disorders (Juntendo University School of Medicine, Tokyo, Japan) and were classified according to clinical information obtained by neurologists. Splicing abnormalities of CHCHD2 mutants were analysed in SH-SY5Y cells. We used the Fishers exact test to calculate the significance of allele frequencies between patients with sporadic Parkinsons disease and unaffected controls, and we calculated odds ratios and 95% CIs of minor alleles. FINDINGS We identified a missense mutation (CHCHD2, 182C>T, Thr61Ile) in family A by next-generation sequencing. We obtained samples from a further 340 index patients with autosomal dominant Parkinsons disease, 517 patients with sporadic Parkinsons disease, and 559 controls. Three CHCHD2 mutations in four of 341 index cases from independent families with autosomal dominant Parkinsons disease were detected by CHCHD2 mutation screening: 182C>T (Thr61Ile), 434G>A (Arg145Gln), and 300+5G>A. Two single nucleotide variants (-9T>G and 5C>T) in CHCHD2 were confirmed to have different frequencies between sporadic Parkinsons disease and controls, with odds ratios of 2·51 (95% CI 1·48-4·24; p=0·0004) and 4·69 (1·59-13·83, p=0·0025), respectively. One single nucleotide polymorphism (rs816411) was found in CHCHD2 from a previously reported genome-wide association study; however, there was no significant difference in its frequency between patients with Parkinsons disease and controls in a previously reported genome-wide association study (odds ratio 1·17, 95% CI 0·96-1·19; p=0·22). In SH-SY5Y cells, the 300+5G>A mutation but not the other two mutations caused exon 2 skipping. INTERPRETATION CHCHD2 mutations are associated with, and might be a cause of, autosomal dominant Parkinsons disease. Further genetic studies in other populations are needed to confirm the pathogenicity of CHCHD2 mutations in autosomal dominant Parkinsons disease and susceptibility for sporadic Parkinsons disease, and further functional studies are needed to understand how mutant CHCHD2 might play a part in the pathophysiology of Parkinsons disease. FUNDING Japan Society for the Promotion of Science; Japanese Ministry of Education, Culture, Sports, Science and Technology; Japanese Ministry of Health, Labour and Welfare; Takeda Scientific Foundation; Cell Science Research Foundation; and Nakajima Foundation.


Movement Disorders | 2006

Clinicogenetic study of mutations in LRRK2 exon 41 in Parkinson's disease patients from 18 countries

Hiroyuki Tomiyama; Yuanzhe Li; Manabu Funayama; Kazuko Hasegawa; Hiroyo Yoshino; Shin-ichiro Kubo; Kenichi Sato; Tatsuya Hattori; Chin-Song Lu; Rivka Inzelberg; Ruth Djaldetti; Eldad Melamed; Rim Amouri; N. Gouider-Khouja; F. Hentati; Y. Hatano; Mei Wang; Yoko Imamichi; Koichi Mizoguchi; Hiroaki Miyajima; Fumiya Obata; Tatsushi Toda; Matthew J. Farrer; Yoshikuni Mizuno; Nobutaka Hattori

We screened LRRK2 mutations in exon 41 in 904 parkin‐negative Parkinsons disease (PD) patients (868 probands) from 18 countries across 5 continents. We found three heterozygous missense (novel I2012T, G2019S, and I2020T) mutations in LRRK2 exon 41. We identified 11 (1.3%) among 868 PD probands, including 2 sporadic cases and 8 (6.2%) of 130 autosomal dominant PD families. The LRRK2 mutations in exon 41 exhibited relatively common and worldwide distribution. Among the three mutations in exon 41, it has been reported that Caucasian patients with G2019S mutation have a single‐founder effect. In the present study, Japanese patients with G2019S were unlikely to have a single founder from the Caucasian patients. In contrast, I2020T mutation has a single‐founder effect in Japanese patients. Clinically, patients with LRRK2 mutations had typical idiopathic PD. Notably, several patients developed dementia and psychosis, and one with I2020T had low cardiac 123I‐metaiodobenzylguanidine (MIBG) heart/mediastinum ratio, although the ratio was not low in other patients with I2020T or G2019S. Clinical phenotypes including psychosis, dementia, and MIBG ratios are also heterogeneous, similar to neuropathology, in PD associated with LRRK2 mutations.

Collaboration


Dive into the Kazuko Hasegawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge