Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuko Ueno is active.

Publication


Featured researches published by Kazuko Ueno.


BMC Systems Biology | 2009

Simulation-based model checking approach to cell fate specification during Caenorhabditis elegans vulval development by hybrid functional Petri net with extension

Chen Li; Masao Nagasaki; Kazuko Ueno; Satoru Miyano

BackgroundModel checking approaches were applied to biological pathway validations around 2003. Recently, Fisher et al. have proved the importance of model checking approach by inferring new regulation of signaling crosstalk in C. elegans and confirming the regulation with biological experiments. They took a discrete and state-based approach to explore all possible states of the system underlying vulval precursor cell (VPC) fate specification for desired properties. However, since both discrete and continuous features appear to be an indispensable part of biological processes, it is more appropriate to use quantitative models to capture the dynamics of biological systems. Our key motivation of this paper is to establish a quantitative methodology to model and analyze in silico models incorporating the use of model checking approach.ResultsA novel method of modeling and simulating biological systems with the use of model checking approach is proposed based on hybrid functional Petri net with extension (HFPNe) as the framework dealing with both discrete and continuous events. Firstly, we construct a quantitative VPC fate model with 1761 components by using HFPNe. Secondly, we employ two major biological fate determination rules – Rule I and Rule II – to VPC fate model. We then conduct 10,000 simulations for each of 48 sets of different genotypes, investigate variations of cell fate patterns under each genotype, and validate the two rules by comparing three simulation targets consisting of fate patterns obtained from in silico and in vivo experiments. In particular, an evaluation was successfully done by using our VPC fate model to investigate one target derived from biological experiments involving hybrid lineage observations. However, the understandings of hybrid lineages are hard to make on a discrete model because the hybrid lineage occurs when the system comes close to certain thresholds as discussed by Sternberg and Horvitz in 1986. Our simulation results suggest that: Rule I that cannot be applied with qualitative based model checking, is more reasonable than Rule II owing to the high coverage of predicted fate patterns (except for the genotype of lin-15ko; lin-12ko double mutants). More insights are also suggested.ConclusionThe quantitative simulation-based model checking approach is a useful means to provide us valuable biological insights and better understandings of biological systems and observation data that may be hard to capture with the qualitative one.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells

Hideto Koso; Haruna Takeda; Christopher Chin Kuan Yew; Jerrold M. Ward; Naoki Nariai; Kazuko Ueno; Masao Nagasaki; Sumiko Watanabe; Alistair G. Rust; David J. Adams; Neal G. Copeland; Nancy A. Jenkins

Neural stem cells (NSCs) are considered to be the cell of origin of glioblastoma multiforme (GBM). However, the genetic alterations that transform NSCs into glioma-initiating cells remain elusive. Using a unique transposon mutagenesis strategy that mutagenizes NSCs in culture, followed by additional rounds of mutagenesis to generate tumors in vivo, we have identified genes and signaling pathways that can transform NSCs into glioma-initiating cells. Mobilization of Sleeping Beauty transposons in NSCs induced the immortalization of astroglial-like cells, which were then able to generate tumors with characteristics of the mesenchymal subtype of GBM on transplantation, consistent with a potential astroglial origin for mesenchymal GBM. Sequence analysis of transposon insertion sites from tumors and immortalized cells identified more than 200 frequently mutated genes, including human GBM-associated genes, such as Met and Nf1, and made it possible to discriminate between genes that function during astroglial immortalization vs. later stages of tumor development. We also functionally validated five GBM candidate genes using a previously undescribed high-throughput method. Finally, we show that even clonally related tumors derived from the same immortalized line have acquired distinct combinations of genetic alterations during tumor development, suggesting that tumor formation in this model system involves competition among genetically variant cells, which is similar to the Darwinian evolutionary processes now thought to generate many human cancers. This mutagenesis strategy is faster and simpler than conventional transposon screens and can potentially be applied to any tissue stem/progenitor cells that can be grown and differentiated in vitro.


PLOS ONE | 2012

Epidermal Growth Factor Receptor Tyrosine Kinase Defines Critical Prognostic Genes of Stage I Lung Adenocarcinoma

Mai Yamauchi; Rui Yamaguchi; Asuka Nakata; Takashi Kohno; Masao Nagasaki; Teppei Shimamura; Seiya Imoto; Ayumu Saito; Kazuko Ueno; Yousuke Hatanaka; Ryo Yoshida; Tomoyuki Higuchi; Masaharu Nomura; David G. Beer; Jun Yokota; Satoru Miyano; Noriko Gotoh

Purpose To identify stage I lung adenocarcinoma patients with a poor prognosis who will benefit from adjuvant therapy. Patients and Methods Whole gene expression profiles were obtained at 19 time points over a 48-hour time course from human primary lung epithelial cells that were stimulated with epidermal growth factor (EGF) in the presence or absence of a clinically used EGF receptor tyrosine kinase (RTK)-specific inhibitor, gefitinib. The data were subjected to a mathematical simulation using the State Space Model (SSM). “Gefitinib-sensitive” genes, the expressional dynamics of which were altered by addition of gefitinib, were identified. A risk scoring model was constructed to classify high- or low-risk patients based on expression signatures of 139 gefitinib-sensitive genes in lung cancer using a training data set of 253 lung adenocarcinomas of North American cohort. The predictive ability of the risk scoring model was examined in independent cohorts of surgical specimens of lung cancer. Results The risk scoring model enabled the identification of high-risk stage IA and IB cases in another North American cohort for overall survival (OS) with a hazard ratio (HR) of 7.16 (P = 0.029) and 3.26 (P = 0.0072), respectively. It also enabled the identification of high-risk stage I cases without bronchioalveolar carcinoma (BAC) histology in a Japanese cohort for OS and recurrence-free survival (RFS) with HRs of 8.79 (P = 0.001) and 3.72 (P = 0.0049), respectively. Conclusion The set of 139 gefitinib-sensitive genes includes many genes known to be involved in biological aspects of cancer phenotypes, but not known to be involved in EGF signaling. The present result strongly re-emphasizes that EGF signaling status in cancer cells underlies an aggressive phenotype of cancer cells, which is useful for the selection of early-stage lung adenocarcinoma patients with a poor prognosis. Trial Registration The Gene Expression Omnibus (GEO) GSE31210


American Journal of Physiology-endocrinology and Metabolism | 2009

Ligand-based gene expression profiling reveals novel roles of glucocorticoid receptor in cardiac metabolism

Noritada Yoshikawa; Masao Nagasaki; Motoaki Sano; Satori Tokudome; Kazuko Ueno; Noriaki Shimizu; Seiya Imoto; Satoru Miyano; Makoto Suematsu; Keiichi Fukuda; Chikao Morimoto; Hirotoshi Tanaka

Recent studies have documented various roles of adrenal corticosteroid signaling in cardiac physiology and pathophysiology. It is known that glucocorticoids and aldosterone are able to bind glucocorticoid receptor (GR) and mineralocorticoid receptor, and these ligand-receptor interactions are redundant. It, therefore, has been impossible to delineate how these nuclear receptors couple with corticosteroid ligands and differentially regulate gene expression for operation of their distinct functions in the heart. Here, to particularly define the role of GR in cardiac muscle cells, we applied a ligand-based approach involving the GR-specific agonist cortivazol (CVZ) and the GR antagonist RU-486 and performed microarray analysis using rat neonatal cardiomyocytes. We indicated that glucocorticoids appear to be a major determinant of GR-mediated gene expression when compared with aldosterone. Moreover, expression profiles of these genes highlighted numerous roles of glucocorticoids in various aspects of cardiac physiology. At first, we identified that glucocorticoids, via GR, induce mRNA and protein expression of a transcription factor Kruppel-like factor 15 and its downstream target genes, including branched-chain aminotransferase 2, a key enzyme for amino acid catabolism in the muscle. CVZ treatment or overexpression of KLF15 decreased cellular branched-chain amino acid concentrations and introduction of small-interfering RNA against KLF15 cancelled these CVZ actions in cardiomyocytes. Second, glucocorticoid-GR signaling promoted gene expression of the enzymes involved in the prostaglandin biosynthesis, including cyclooxygenase-2 and phospholipase A2 in cardiomyocytes. Together, we may conclude that GR signaling should have distinct roles for maintenance of cardiac function, for example, in amino acid catabolism and prostaglandin biosynthesis in the heart.


Proceedings of the 9th Annual International Workshop on Bioinformatics and Systems Biology (IBSB 2009) | 2010

A STATE SPACE REPRESENTATION OF VAR MODELS WITH SPARSE LEARNING FOR DYNAMIC GENE NETWORKS

Kaname Kojima; Rui Yamaguchi; Seiya Imoto; Mai Yamauchi; Masao Nagasaki; Ryo Yoshida; Teppei Shimamura; Kazuko Ueno; Tomoyuki Higuchi; Noriko Gotoh; Satoru Miyano

We propose a state space representation of vector autoregressive model and its sparse learning based on L1 regularization to achieve efficient estimation of dynamic gene networks based on time course microarray data. The proposed method can overcome drawbacks of the vector autoregressive model and state space model; the assumption of equal time interval and lack of separation ability of observation and systems noises in the former method and the assumption of modularity of network structure in the latter method. However, in a simple implementation the proposed model requires the calculation of large inverse matrices in a large number of times during parameter estimation process based on EM algorithm. This limits the applicability of the proposed method to a relatively small gene set. We thus introduce a new calculation technique for EM algorithm that does not require the calculation of inverse matrices. The proposed method is applied to time course microarray data of lung cells treated by stimulating EGF receptors and dosing an anticancer drug, Gefitinib. By comparing the estimated network with the control network estimated using non-treated lung cells, perturbed genes by the anticancer drug could be found, whose up- and down-stream genes in the estimated networks may be related to side effects of the anticancer drug.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Wnt3a stimulates maturation of impaired neutrophils developed from severe congenital neutropenia patient-derived pluripotent stem cells

Takafumi Hiramoto; Yasuhiro Ebihara; Yoko Mizoguchi; Kazuhiro Nakamura; Kiyoshi Yamaguchi; Kazuko Ueno; Naoki Nariai; Shinji Mochizuki; Shohei Yamamoto; Masao Nagasaki; Yoichi Furukawa; Kenzaburo Tani; Hiromitsu Nakauchi; Masao Kobayashi; Kohichiro Tsuji

The derivation of induced pluripotent stem (iPS) cells from individuals of genetic disorders offers new opportunities for basic research into these diseases and the development of therapeutic compounds. Severe congenital neutropenia (SCN) is a serious disorder characterized by severe neutropenia at birth. SCN is associated with heterozygous mutations in the neutrophil elastase [elastase, neutrophil-expressed (ELANE)] gene, but the mechanisms that disrupt neutrophil development have not yet been clarified because of the current lack of an appropriate disease model. Here, we generated iPS cells from an individual with SCN (SCN-iPS cells). Granulopoiesis from SCN-iPS cells revealed neutrophil maturation arrest and little sensitivity to granulocyte-colony stimulating factor, reflecting a disease status of SCN. Molecular analysis of the granulopoiesis from the SCN-iPS cells vs. control iPS cells showed reduced expression of genes related to the wingless-type mmtv integration site family, member 3a (Wnt3a)/β-catenin pathway [e.g., lymphoid enhancer-binding factor 1], whereas Wnt3a administration induced elevation lymphoid enhancer-binding factor 1-expression and the maturation of SCN-iPS cell-derived neutrophils. These results indicate that SCN-iPS cells provide a useful disease model for SCN, and the activation of the Wnt3a/β-catenin pathway may offer a novel therapy for SCN with ELANE mutation.


Glia | 2016

Conditional rod photoreceptor ablation reveals Sall1 as a microglial marker and regulator of microglial morphology in the retina.

Hideto Koso; Asano Tsuhako; Chen-Yi Lai; Yukihiro Baba; Makoto Otsu; Kazuko Ueno; Masao Nagasaki; Yutaka Suzuki; Sumiko Watanabe

Neurodegeneration has been shown to induce microglial activation and the infiltration of monocyte‐derived macrophages into the CNS, resulting in the coexistence of these two populations within the same lesion, though their distinct features remain elusive. To investigate the impact of rod photoreceptor degeneration on microglial activation, we generated a toxin‐mediated genetic model of rod degeneration. Rod injury induced microglial proliferation and migration toward the photoreceptors. Bone marrow transplantation revealed the invasion of monocyte‐derived macrophages into the retina, with microglia and the infiltrating macrophages showing distinct distribution patterns in the retina. By comparing the gene expression profiles of the activated microglia and infiltrating macrophages, we identified microglia‐specific genes, including Ak1, Ctsf, Sall1, Phlda3, and Spns2. An analysis of Sall1gfp knock‐in mice showed GFP expression in the microglia of developing and mature healthy retinas. DTA injury induced the expansion of Sall1gfp+ microglia, whereas Ly6C+ monocyte‐derived macrophages were mostly Sall1gfp‐, supporting the idea that Sall1 is exclusively expressed in microglia within the retinal phagocyte pool. We evaluated the contribution of microglia to the phagocyte pool in rd1 mutant retinas and found that Sall1gfp+ microglia constituted the majority of phagocytes. A Sall1 deficiency did not affect microglial colonization of the retina and the cortex, but it did change their morphology from a ramified to a more amoeboid appearance. The morphological defects observed in Sall1‐deficient microglia were not rescued by the presence of wild‐type non‐microglial cells, suggesting that Sall1 functions cell‐autonomously in microglia. Taken together, our data indicate that Sall1 regulates microglial morphology during development. GLIA 2016;64:2005–2024


PLOS ONE | 2013

Profiling of microRNA in human and mouse ES and iPS cells reveals overlapping but distinct microRNA expression patterns.

Siti Razila Abdul Razak; Kazuko Ueno; Naoya Takayama; Naoki Nariai; Masao Nagasaki; Rika Saito; Hideto Koso; Chen-Yi Lai; Miyako Murakami; Koichiro Tsuji; Tatsuo Michiue; Hiromitsu Nakauchi; Makoto Otsu; Sumiko Watanabe

Using quantitative PCR-based miRNA arrays, we comprehensively analyzed the expression profiles of miRNAs in human and mouse embryonic stem (ES), induced pluripotent stem (iPS), and somatic cells. Immature pluripotent cells were purified using SSEA-1 or SSEA-4 and were used for miRNA profiling. Hierarchical clustering and consensus clustering by nonnegative matrix factorization showed two major clusters, human ES/iPS cells and other cell groups, as previously reported. Principal components analysis (PCA) to identify miRNAs that segregate in these two groups identified miR-187, 299-3p, 499-5p, 628-5p, and 888 as new miRNAs that specifically characterize human ES/iPS cells. Detailed direct comparisons of miRNA expression levels in human ES and iPS cells showed that several miRNAs included in the chromosome 19 miRNA cluster were more strongly expressed in iPS cells than in ES cells. Similar analysis was conducted with mouse ES/iPS cells and somatic cells, and several miRNAs that had not been reported to be expressed in mouse ES/iPS cells were suggested to be ES/iPS cell-specific miRNAs by PCA. Comparison of the average expression levels of miRNAs in ES/iPS cells in humans and mice showed quite similar expression patterns of human/mouse miRNAs. However, several mouse- or human-specific miRNAs are ranked as high expressers. Time course tracing of miRNA levels during embryoid body formation revealed drastic and different patterns of changes in their levels. In summary, our miRNA expression profiling encompassing human and mouse ES and iPS cells gave various perspectives in understanding the miRNA core regulatory networks regulating pluripotent cells characteristics.


Scientific Reports | 2016

Transition of differential histone H3 methylation in photoreceptors and other retinal cells during retinal differentiation

Kazuko Ueno; Toshiro Iwagawa; Hiroshi Kuribayashi; Yukihiro Baba; Hiromitsu Nakauchi; Akira Murakami; Masao Nagasaki; Yutaka Suzuki; Sumiko Watanabe

To analyze cell lineage-specific transitions in global transcriptional and epigenetic changes during retinogenesis, we purified retinal cells from normal mice during postnatal development into two fractions, namely, photoreceptors and other retinal cells, based on Cd73 expression, and performed RNA sequencing and ChIP sequencing of H3K27me3 and H3K4me3. Genes expressed in the photoreceptor lineage were marked with H3K4me3 in the Cd73-positive cell fraction; however, the level of H3K27me3 was very low in both Cd73-positive and -negative populations. H3K27me3 may be involved in spatio-temporal onset of a subset of bipolar-related genes. Subsets of genes expressed in amacrine and retinal ganglion cells, which are early-born retinal cell types, were suggested to be maintained in a silent state by H3K27me3 during late-stage retinogenesis. In the outer nuclear layer, upregulation of Rho and rod-related genes were observed in Ezh2-ablated retina, suggesting a role for H3K27me3 in the maintenance of proper expression levels. Taken together, our data on the transition of lineage-specific molecular signatures during development suggest that histone methylation is involved in retinal differentiation and maintenance through cell lineage-specific mechanisms.


BMC Bioinformatics | 2011

Ontology-based instance data validation for high-quality curated biological pathways

Euna Jeong; Masao Nagasaki; Kazuko Ueno; Satoru Miyano

BackgroundModeling in systems biology is vital for understanding the complexity of biological systems across scales and predicting system-level behaviors. To obtain high-quality pathway databases, it is essential to improve the efficiency of model validation and model update based on appropriate feedback.ResultsWe have developed a new method to guide creating novel high-quality biological pathways, using a rule-based validation. Rules are defined to correct models against biological semantics and improve models for dynamic simulation. In this work, we have defined 40 rules which constrain event-specific participants and the related features and adding missing processes based on biological events. This approach is applied to data in Cell System Ontology which is a comprehensive ontology that represents complex biological pathways with dynamics and visualization. The experimental results show that the relatively simple rules can efficiently detect errors made during curation, such as misassignment and misuse of ontology concepts and terms in curated models.ConclusionsA new rule-based approach has been developed to facilitate model validation and model complementation. Our rule-based validation embedding biological semantics enables us to provide high-quality curated biological pathways. This approach can serve as a preprocessing step for model integration, exchange and extraction data, and simulation.

Collaboration


Dive into the Kazuko Ueno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge