Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuma Sakamoto is active.

Publication


Featured researches published by Kazuma Sakamoto.


Cell Death and Disease | 2013

Minocycline selectively inhibits M1 polarization of microglia

Kazuyoshi Kobayashi; Shiro Imagama; Tomohiro Ohgomori; Kenichi Hirano; Kenji Uchimura; Kazuma Sakamoto; Akihiro Hirakawa; Hideyuki Takeuchi; Akio Suzumura; Naoki Ishiguro; Kenji Kadomatsu

Minocycline is commonly used to inhibit microglial activation. It is widely accepted that activated microglia exert dual functions, that is, pro-inflammatory (M1) and anti-inflammatory (M2) functions. The in vivo status of activated microglia is probably on a continuum between these two extreme states. However, the mechanisms regulating microglial polarity remain elusive. Here, we addressed this question focusing on minocycline. We used SOD1G93A mice as a model, which exhibit the motor neuron-specific neurodegenerative disease, amyotrophic lateral sclerosis. Administration of minocycline attenuated the induction of the expression of M1 microglia markers during the progressive phase, whereas it did not affect the transient enhancement of expression of M2 microglia markers during the early pathogenesis phase. This selective inhibitory effect was confirmed using primary cultured microglia stimulated by lipopolysaccharide (LPS) or interleukin (IL)-4, which induced M1 or M2 polarization, respectively. Furthermore, minocycline inhibited the upregulation of NF-κB in the LPS-stimulated primary cultured microglia and in the spinal cord of SOD1G93A mice. On the other hand, IL-4 did not induce upregulation of NF-κB. This study indicates that minocycline selectively inhibits the microglia polarization to a proinflammatory state, and provides a basis for understanding pathogeneses of many diseases accompanied by microglial activation.


Journal of Clinical Investigation | 2011

Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms

Kiyoshi Sakai; Akihito Yamamoto; Kohki Matsubara; Shoko Nakamura; Mami Naruse; Mari Yamagata; Kazuma Sakamoto; Ryoji Tauchi; Norimitsu Wakao; Shiro Imagama; Hideharu Hibi; Kenji Kadomatsu; Naoki Ishiguro; Minoru Ueda

Spinal cord injury (SCI) often leads to persistent functional deficits due to loss of neurons and glia and to limited axonal regeneration after injury. Here we report that transplantation of human dental pulp stem cells into the completely transected adult rat spinal cord resulted in marked recovery of hind limb locomotor functions. Transplantation of human bone marrow stromal cells or skin-derived fibroblasts led to substantially less recovery of locomotor function. The human dental pulp stem cells exhibited three major neuroregenerative activities. First, they inhibited the SCI-induced apoptosis of neurons, astrocytes, and oligodendrocytes, which improved the preservation of neuronal filaments and myelin sheaths. Second, they promoted the regeneration of transected axons by directly inhibiting multiple axon growth inhibitors, including chondroitin sulfate proteoglycan and myelin-associated glycoprotein, via paracrine mechanisms. Last, they replaced lost cells by differentiating into mature oligodendrocytes under the extreme conditions of SCI. Our data demonstrate that tooth-derived stem cells may provide therapeutic benefits for treating SCI through both cell-autonomous and paracrine neuroregenerative activities.


Journal of The American Society of Nephrology | 2009

The E-Selectin Ligand Basigin/CD147 Is Responsible for Neutrophil Recruitment in Renal Ischemia/Reperfusion

Noritoshi Kato; Yukio Yuzawa; Tomoki Kosugi; Akinori Hobo; Waichi Sato; Yuko Miwa; Kazuma Sakamoto; Seiichi Matsuo; Kenji Kadomatsu

E-selectin and its ligands are essential for extravasation of leukocytes in inflammation. Here, we report that basigin (Bsg)/CD147 is a ligand for E-selectin that promotes renal inflammation in ischemia/reperfusion. Compared with wild-type mice, Bsg-deficient (Bsg(-/-)) mice demonstrated striking suppression of neutrophil infiltration in the kidney after renal ischemia/reperfusion. Although E-selectin expression increased similarly between the two genotypes, Bsg(-/-) mice exhibited less renal damage, suggesting that Bsg on neutrophils contribute to renal injury in this model. Neutrophils expressed Bsg with N-linked polylactosamine chains and Bsg(-)(/)(-) neutrophils showed reduced binding to E-selectin. Bsg isolated from HL-60 cells bound to E-selectin, and tunicamycin treatment to abolish N-linked glycans from Bsg abrogated this binding. Furthermore, Bsg(-)(/)(-) neutrophils exhibited reduced E-selectin-dependent adherence to human umbilical vein endothelial cells in vitro. Injection of labeled neutrophils into mice showed that Bsg(-)(/)(-) neutrophils were less readily recruited to the kidney after renal ischemia/reperfusion than Bsg(+/+) neutrophils, regardless of the recipients genotype. Taken together, these results indicate that Bsg is a physiologic ligand for E-selectin that plays a critical role in the renal damage induced by ischemia/reperfusion.


The Journal of Neuroscience | 2011

Keratan Sulfate Restricts Neural Plasticity after Spinal Cord Injury

Shiro Imagama; Kazuma Sakamoto; Ryoji Tauchi; Ryuichi Shinjo; Tomohiro Ohgomori; Zenya Ito; Haoqian Zhang; Yoshihiro Nishida; Nagamasa Asami; Sawako Takeshita; Nobuo Sugiura; Hideto Watanabe; Toshihide Yamashita; Naoki Ishiguro; Yukihiro Matsuyama; Kenji Kadomatsu

Chondroitin sulfate (CS) proteoglycans are strong inhibitors of structural rearrangement after injuries of the adult CNS. In addition to CS chains, keratan sulfate (KS) chains are also covalently attached to some proteoglycans. CS and KS sometimes share the same core protein, but exist as independent sugar chains. However, the biological significance of KS remains elusive. Here, we addressed the question of whether KS is involved in plasticity after spinal cord injury. Keratanase II (K-II) specifically degraded KS, i.e., not CS, in vivo. This enzyme digestion promoted the recovery of motor and sensory function after spinal cord injury in rats. Consistent with this, axonal regeneration/sprouting was enhanced in K-II-treated rats. K-II and the CS-degrading enzyme chondroitinase ABC exerted comparable effects in vivo and in vitro. However, these two enzymes worked neither additively nor synergistically. These data and further in vitro studies involving artificial proteoglycans (KS/CS-albumin) and heat-denatured or reduced/alkylated proteoglycans suggested that all three components of the proteoglycan moiety, i.e., the core protein, CS chains, and KS chains, were required for the inhibitory activity of proteoglycans. We conclude that KS is essential for, and has an impact comparable to that of CS on, postinjury plasticity. Our study also established that KS and CS are independent requirements for the proteoglycan-mediated inhibition of axonal regeneration/sprouting.


The Journal of Neuroscience | 2010

N-Acetylglucosamine 6-O-Sulfotransferase-1-Deficient Mice Show Better Functional Recovery after Spinal Cord Injury

Zenya Ito; Kazuma Sakamoto; Shiro Imagama; Yukihiro Matsuyama; Haoqian M Zhang; Ken-ichi Hirano; Kei Ando; Toshihide Yamashita; Naoki Ishiguro; Kenji Kadomatsu

Neurons in the adult CNS do not spontaneously regenerate after injuries. The glycosaminoglycan keratan sulfate is induced after spinal cord injury, but its biological significance is not well understood. Here we investigated the role of keratan sulfate in functional recovery after spinal cord injury, using mice deficient in N-acetylglucosamine 6-O-sulfotransferase-1 that lack 5D4-reactive keratan sulfate in the CNS. We made contusion injuries at the 10th thoracic level. Expressions of N-acetylglucosamine 6-O-sulfotransferase-1 and keratan sulfate were induced after injury in wild-type mice, but not in the deficient mice. The wild-type and deficient mice showed similar degrees of chondroitin sulfate induction and of CD11b-positive inflammatory cell recruitment. However, motor function recovery, as assessed by the footfall test, footprint test, and Basso mouse scale locomotor scoring, was significantly better in the deficient mice. Moreover, the deficient mice showed a restoration of neuromuscular system function below the lesion after electrical stimulation at the occipito-cervical area. In addition, axonal regrowth of both the corticospinal and raphespinal tracts was promoted in the deficient mice. In vitro assays using primary cerebellar granule neurons demonstrated that keratan sulfate proteoglycans were required for the proteoglycan-mediated inhibition of neurite outgrowth. These data collectively indicate that keratan sulfate expression is closely associated with functional disturbance after spinal cord injury. N-acetylglucosamine 6-O-sulfotransferase-1-deficient mice are a good model to investigate the roles of keratan sulfate in the CNS.


Journal of Cell Science | 2007

Midkine and LDL-receptor-related protein 1 contribute to the anchorage-independent cell growth of cancer cells

Sen Chen; Guojun Bu; Yoshifumi Takei; Kazuma Sakamoto; Shinya Ikematsu; Takashi Muramatsu; Kenji Kadomatsu

The growth factor midkine (MK) is highly associated with cancer progression. Knockdown of MK expression strikingly suppresses tumor growth in nude mice. Thus, MK is a candidate target for cancer treatment. LDL-receptor-related protein 1 (LRP1) is a receptor for MK. We found that among the four ligand-binding domains of LRP1, the N-terminal half of the second domain (designated as MK-TRAP) had the strongest affinity to MK. MK-TRAP bound to MK, but not to HB-GAM/pleiotrophin, basic fibroblast growth factor or platelet-derived growth factor (PDGF)-BB. Exogenous MK-TRAP inhibited the binding between MK and LRP1. G401 cells that transiently or stably overexpress MK-TRAP showed decreased cell growth in monolayer culture and reduced colony formation in soft agar, which could be rescued by exogenous MK administration. MK-TRAP collected from conditioned medium also inhibited anchorage-independent growth of G401 cells and CMT-93 cells. Anti-MK antibody also inhibited the anchorage-independent growth. CMT-93 cells stably expressing MK-TRAP formed smaller tumors in a xenograft nude mouse model than control cells. Moreover, GST-RAP, a potent inhibitor of LRP1, inhibited the anchorage-independent growth of control G401 cells but not that of MK-TRAP stable transformants. Collectively, these data demonstrate a crucial role of MK-LRP1 signaling in anchorage-independent cell growth.


American Journal of Pathology | 2011

Basigin/CD147 Promotes Renal Fibrosis after Unilateral Ureteral Obstruction

Noritoshi Kato; Tomoki Kosugi; Waichi Sato; Takuji Ishimoto; Hiroshi Kojima; Yuka Sato; Kazuma Sakamoto; Shoichi Maruyama; Yukio Yuzawa; Seiichi Matsuo; Kenji Kadomatsu

Regardless of their primary causes, progressive renal fibrosis and tubular atrophy are the main predictors of progression to end-stage renal disease. Basigin/CD147 is a multifunctional molecule-it induces matrix metalloproteinases and hyaluronan, for example-and has been implicated in organ fibrosis. However, the relationship between basigin and organ fibrosis has been poorly studied. We investigated basigins role in renal fibrosis using a unilateral ureteral obstruction model. Basigin-deficient mice (Bsg(-/-)) demonstrated significantly less fibrosis after surgery than Bsg(+/+) mice. Fewer macrophages had infiltrated in Bsg(-/-) kidneys. Consistent with these in vivo data, primary cultured tubular epithelial cells from Bsg(-/-) mice produced less matrix metalloproteinase and exhibited less motility on stimulation with transforming growth factor β. Furthermore, Bsg(-/-) embryonic fibro blasts produced less hyaluronan and α-smooth muscle actin after transforming growth factor β stimulation. Together, these results demonstrate for the first time that basigin is a key regulator of renal fibrosis. Basigin could be a candidate target molecule for the prevention of organ fibrosis.


Cancer Research | 2013

Midkine promotes neuroblastoma through Notch2 signaling

Satoshi Kishida; Ping Mu; Shin Miyakawa; Masatoshi Fujiwara; Tomoyuki Abe; Kazuma Sakamoto; Akira Onishi; Yoshikazu Nakamura; Kenji Kadomatsu

Midkine is a heparin-binding growth factor highly expressed in various cancers, including neuroblastoma, the most common extracranial pediatric solid tumor. Prognosis of patients with neuroblastoma in which MYCN is amplified remains particularly poor. In this study, we used a MYCN transgenic model for neuroblastoma in which midkine is highly expressed in precancerous lesions of sympathetic ganglia. Genetic ablation of midkine in this model delayed tumor formation and reduced tumor incidence. Furthermore, an RNA aptamer that specifically bound midkine suppressed the growth of neuroblastoma cells in vitro and in vivo in tumor xenografts. In precancerous lesions, midkine-deficient MYCN transgenic mice exhibited defects in activation of Notch2, a candidate midkine receptor, and expression of the Notch target gene HES1. Similarly, RNA aptamer-treated tumor xenografts also showed attenuation of Notch2-HES1 signaling. Our findings establish a critical role for the midkine-Notch2 signaling axis in neuroblastoma tumorigenesis, which implicates new strategies to treat neuroblastoma.


Pathology International | 2012

Midkine in the pathology of cancer, neural disease, and inflammation.

Kazuma Sakamoto; Kenji Kadomatsu

Midkine (MK) is a heparin‐binding growth factor involved in various cellular processes such as cellular proliferation, survival, and migration. In addition to these typical growth factor activities, MK exhibits several other activities related to fibrinolysis, blood pressure, host defense and other processes. Many cell‐surface receptors have been identified to account for the multiple biological activities of MK. The expression of MK is frequently upregulated in many types of human carcinoma. Moreover, blood MK levels are closely correlated with patient outcome. Knockdown and blockade of MK suppress tumorigenesis and tumor development. Thus, MK serves as a tumor marker and a molecular target for cancer therapy. Furthermore, there is growing evidence that MK plays pivotal roles in neural and inflammatory diseases. Understanding of the mechanisms of action of MK is expected to create new therapeutic options for several human diseases.


Brain Research | 2009

Transforming growth factor-β1 upregulates keratan sulfate and chondroitin sulfate biosynthesis in microglias after brain injury

Jiarong Yin; Kazuma Sakamoto; Haoqian Zhang; Zenya Ito; Shiro Imagama; Satoshi Kishida; Takamitsu Natori; Makoto Sawada; Yukihiro Matsuyama; Kenji Kadomatsu

After injury to the adult central nervous system, levels of extracellular matrix molecules increase at the injury site and may inhibit the repair of injured axons. Among these molecules, the importance of proteoglycans, particularly their chondroitin sulfate chains, has been highlighted. We have recently reported that keratan sulfate-deficient mice show better axonal regeneration after injury. Here, we investigated the regulation of keratan sulfate and chondroitin sulfate biosynthesis after neuronal injuries. Several key enzymes required for glycosaminoglycan biosynthesis (beta3GlcNAcT-7 and GlcNAc6ST-1 for keratan sulfate; CS synthase-1 and C6ST-1 for chondroitin sulfate) were expressed at significantly higher levels in the lesion 7 days after a knife-cut injury was made to the cerebral cortex in adult mice. These increases were accompanied by increased expression of TGF-beta(1) and bFGF. Since microglias at the injury sites expressed both keratan sulfate and chondroitin sulfate, the effects of these cytokines were examined in microglias. TGF-beta(1) induced the expression of the above-named enzymes in microglias, and consequently induced keratan sulfate and chondroitin sulfate biosynthesis as well as the expression of the chondroitin/keratan sulfate proteoglycan aggrecan in these cells. TGF-beta(1) also induced bFGF expression in microglias. bFGF in turn induced TGF-beta(1) expression in astrocytes. Astrocyte-conditioned medium following bFGF stimulation indeed induced keratan sulfate and chondroitin sulfate production in microglias. This production was blocked by TGF-beta(1)-neutralizing antibody. Taken together, our data indicate that the biosyntheses of keratan sulfate and chondroitin sulfate are upregulated in common by TGF-beta(1) in microglias after neuronal injuries.

Collaboration


Dive into the Kazuma Sakamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takamitsu Natori

Yamanashi Gakuin University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge