Satoshi Kishida
Nagoya University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Satoshi Kishida.
Molecular Cell | 2000
Giichi Takaesu; Satoshi Kishida; Atsushi Hiyama; Kyoko Yamaguchi; Hiroshi Shibuya; Kenji Irie; Jun Ninomiya-Tsuji; Kunihiro Matsumoto
The TAK1 MAPKKK mediates activation of JNK and NF-KB in the IL-1-activated signaling pathway. Here we report the identification of TAB2, a novel intermediate in the IL-1 pathway that functionally links TAK1 to TRAF6. Expression of TAB2 induces JNK and NF-kappaB activation, whereas a dominant-negative mutant TAB2 impairs their activation by IL-1. IL-1 stimulates translocation of TAB2 from the membrane to the cytosol where it mediates the IL-1-dependent association of TAK1 with TRAF6. These results define TAB2 as an adaptor linking TAK1 and TRAF6 and as a mediator of TAK1 activation in the IL-1 signaling pathway.
Molecular and Cellular Biology | 2003
Tohru Ishitani; Satoshi Kishida; Junko Hyodo-Miura; Naoto Ueno; Jun Yasuda; Marian L. Waterman; Hiroshi Shibuya; Randall T. Moon; Jun Ninomiya-Tsuji; Kunihiro Matsumoto
ABSTRACT Wnt signaling controls a variety of developmental processes. The canonical Wnt/β-catenin pathway functions to stabilize β-catenin, and the noncanonical Wnt/Ca2+ pathway activates Ca2+/calmodulin-dependent protein kinase II (CaMKII). In addition, the Wnt/Ca2+ pathway activated by Wnt-5a antagonizes the Wnt/β-catenin pathway via an unknown mechanism. The mitogen-activated protein kinase (MAPK) pathway composed of TAK1 MAPK kinase kinase and NLK MAPK also negatively regulates the canonical Wnt/β-catenin signaling pathway. Here we show that activation of CaMKII induces stimulation of the TAK1-NLK pathway. Overexpression of Wnt-5a in HEK293 cells activates NLK through TAK1. Furthermore, by using a chimeric receptor (β2AR-Rfz-2) containing the ligand-binding and transmembrane segments from the β2-adrenergic receptor (β2AR) and the cytoplasmic domains from rat Frizzled-2 (Rfz-2), stimulation with the β-adrenergic agonist isoproterenol activates activities of endogenous CaMKII, TAK1, and NLK and inhibits β-catenin-induced transcriptional activation. These results suggest that the TAK1-NLK MAPK cascade is activated by the noncanonical Wnt-5a/Ca2+ pathway and antagonizes canonical Wnt/β-catenin signaling.
Molecular and Cellular Biology | 2001
Giichi Takaesu; Jun Ninomiya-Tsuji; Satoshi Kishida; Xiaoxia Li; George R. Stark; Kunihiro Matsumoto
ABSTRACT Interleukin-1 (IL-1) is a proinflammatory cytokine that recognizes a surface receptor complex and generates multiple cellular responses. IL-1 stimulation activates the mitogen-activated protein kinase kinase kinase TAK1, which in turn mediates activation of c-Jun N-terminal kinase and NF-κB. TAB2 has previously been shown to interact with both TAK1 and TRAF6 and promote their association, thereby triggering subsequent IL-1 signaling events. The serine/threonine kinase IL-1 receptor-associated kinase (IRAK) also plays a role in IL-1 signaling, being recruited to the IL-1 receptor complex early in the signal cascade. In this report, we investigate the role of IRAK in the activation of TAK1. Genetic analysis reveals that IRAK is required for IL-1-induced activation of TAK1. We show that IL-1 stimulation induces the rapid but transient association of IRAK, TRAF6, TAB2, and TAK1. TAB2 is recruited to this complex following translocation from the membrane to the cytosol upon IL-1 stimulation. In IRAK-deficient cells, TAB2 translocation and its association with TRAF6 are abolished. These results suggest that IRAK regulates the redistribution of TAB2 upon IL-1 stimulation and facilitates the formation of a TRAF6-TAB2-TAK1 complex. Formation of this complex is an essential step in the activation of TAK1 in the IL-1 signaling pathway.
EMBO Reports | 2004
Kohsuke Takeda; Atsushi Matsuzawa; Hideki Nishitoh; Kei Tobiume; Satoshi Kishida; Jun Ninomiya-Tsuji; Kunihiro Matsumoto; Hidenori Ichijo
The mammalian mitogen‐activated protein (MAP) kinase kinase kinase apoptosis signal‐regulating kinase 1 (ASK1) is a pivotal component in cytokine‐ and stress‐induced apoptosis. It also regulates cell differentiation and survival through p38 MAP kinase activation. Here we show that Ca2+ signalling regulates the ASK1–p38 MAP kinase cascade. Ca2+ influx evoked by membrane depolarization in primary neurons and synaptosomes induced activation of p38, which was impaired in those derived from ASK1‐deficient mice. Ca2+/calmodulin‐dependent protein kinase type II (CaMKII) activated ASK1 by phosphorylation. Moreover, p38 activation induced by the expression of constitutively active CaMKII required endogenous ASK1. Thus, ASK1 is a critical intermediate of Ca2+ signalling between CaMKII and p38 MAP kinase.
Journal of Biochemistry | 2013
Kenji Kadomatsu; Satoshi Kishida; Shoma Tsubota
The heparin-binding growth factor midkine (MK) comprises a family with pleiotrophin/heparin-binding growth-associated molecule. The biological phenomena in which MK is involved can be categorized into five areas: (i) cancer, (ii) inflammation/immunity, (iii) blood pressure, (iv) development and (v) tissue protection. The phenotypes are clear in vivo, but the mechanisms by which MK exerts these actions are not fully understood. Candidate receptors for MK include anaplastic lymphoma kinase, protein tyrosine phosphatase ζ, Notch2, LDL receptor-related protein 1, integrins and proteoglycans. Some physical associations between these candidate receptors are also known. Because of the striking in vivo phenotypes after manipulation of MK, MK could be an important molecular target for the treatment of various diseases. To this end, it will be important to pursue studies to fully understand the mechanisms of MK action.
Cancer Science | 2008
Shinya Ikematsu; Akira Nakagawara; Yohko Nakamura; Miki Ohira; Masaki Shinjo; Satoshi Kishida; Kenji Kadomatsu
Neuroblastoma is the third‐most‐common solid tumor of childhood. To date, no reliable blood marker for neuroblastoma has been established. The growth factor midkine is highly expressed in human carcinomas and its knockdown leads to tumor growth suppression in animal models. The present study evaluated the plasma midkine level in human neuroblastoma patients. Plasma samples were obtained from patients found through mass screening, as well as from sporadic neuroblastoma patients. The total number of cases examined was 756. Among them, prognostic information was available for 175 sporadic cases and 287 mass‐screening cases. Midkine levels were significantly higher in neuroblastoma patients, including both mass‐screening cases and sporadic cases, than in non‐tumor controls (P < 0.0001). The midkine level was significantly correlated with the statuses of MYCN amplification, TRKA expression, ploidy, stage and age (P < 0.0001, < 0.0001, = 0.004, < 0.0001 and < 0.0001, respectively), which are known prognostic factors for neuroblastoma. There was a striking correlation between high plasma midkine level and poor prognosis (P < 0.0001). Within sporadic cases, the midkine level was also strikingly higher than in non‐tumor controls (P < 0.0001), and correlated with the statuses of MYCN amplification and stage (P = 0.0005 and = 0.003, respectively). There was a significant correlation between high plasma midkine level and poor prognosis (P = 0.04). Taken together, the present data indicate that plasma midkine level is a prognostic factor for human neuroblastoma. (Cancer Sci 2008; 99: 2070–2074)
Cancer Research | 2013
Satoshi Kishida; Ping Mu; Shin Miyakawa; Masatoshi Fujiwara; Tomoyuki Abe; Kazuma Sakamoto; Akira Onishi; Yoshikazu Nakamura; Kenji Kadomatsu
Midkine is a heparin-binding growth factor highly expressed in various cancers, including neuroblastoma, the most common extracranial pediatric solid tumor. Prognosis of patients with neuroblastoma in which MYCN is amplified remains particularly poor. In this study, we used a MYCN transgenic model for neuroblastoma in which midkine is highly expressed in precancerous lesions of sympathetic ganglia. Genetic ablation of midkine in this model delayed tumor formation and reduced tumor incidence. Furthermore, an RNA aptamer that specifically bound midkine suppressed the growth of neuroblastoma cells in vitro and in vivo in tumor xenografts. In precancerous lesions, midkine-deficient MYCN transgenic mice exhibited defects in activation of Notch2, a candidate midkine receptor, and expression of the Notch target gene HES1. Similarly, RNA aptamer-treated tumor xenografts also showed attenuation of Notch2-HES1 signaling. Our findings establish a critical role for the midkine-Notch2 signaling axis in neuroblastoma tumorigenesis, which implicates new strategies to treat neuroblastoma.
Cancer Research | 2011
Peng Huang; Satoshi Kishida; Dongliang Cao; Yuko Murakami-Tonami; Ping Mu; Masato Nakaguro; Naoshi Koide; Ichiro Takeuchi; Akira Onishi; Kenji Kadomatsu
The basic helix-loop-helix transcription factor NeuroD1 has been implicated in the neurogenesis and early differentiation of pancreatic endocrine cells. However, its function in relation to cancer has been poorly examined. In this study, we found that NeuroD1 is involved in the tumorigenesis of neuroblastoma. NeuroD1 was strongly expressed in a hyperplastic region comprising neuroblasts in the celiac sympathetic ganglion of 2-week-old MYCN transgenic (Tg) mice and was consistently expressed in the subsequently generated neuroblastoma tissue. NeuroD1 knockdown by short hairpin RNA (shRNA) resulted in motility inhibition of the human neuroblastoma cell lines, and this effect was reversed by shRNA-resistant NeuroD1. The motility inhibition by NeuroD1 knockdown was associated with induction of Slit2 expression, and knockdown of Slit2 could restore cell motility. Consistent with this finding, shRNA-resistant NeuroD1 suppressed Slit2 expression. NeuroD1 directly bound to the first and second E-box of the Slit2 promoter region. Moreover, we found that the growth of tumor spheres, established from neuroblastoma cell lines in MYCN Tg mice, was suppressed by NeuroD1 suppression. The functions identified for NeuroD1 in cell motility and tumor sphere growth may suggest a link between NeuroD1 and the tumorigenesis of neuroblastoma. Indeed, tumor formation of tumor sphere-derived cells was significantly suppressed by NeuroD1 knockdown. These data are relevant to the clinical features of human neuroblastoma: high NeuroD1 expression was closely associated with poor prognosis. Our findings establish the critical role of the neuronal differentiation factor NeuroD1 in neuroblastoma as well as its functional relationship with the neuronal repellent factor Slit2.
Scientific Reports | 2013
Md. Kamrul Hasan; Asmaa Nafady; Atsushi Takatori; Satoshi Kishida; Miki Ohira; Yusuke Suenaga; Shamim Hossain; Jesmin Akter; Atsushi Ogura; Yohko Nakamura; Kenji Kadomatsu; Akira Nakagawara
Human anaplastic lymphoma kinase (ALK) has been identified as an oncogene that is mutated or amplified in NBLs. To obtain a better understanding of the molecular events associated with ALK in the pathogenesis of NBL, it is necessary to clarify how ALK gene contributes to NBL progression. In the present study, we found that ALK expression was significantly high in NBL clinical samples with amplified MYCN (n = 126, P < 0.01) and in developing tumors of MYCN-transgenic mice. Indeed, promoter analysis revealed that ALK is a direct transcriptional target of MYCN. Overexpression and knockdown of ALK demonstrated its function in cell proliferation, migration and invasion. Moreover, treatment with an ALK inhibitor, TAE-684, efficiently suppressed such biological effects in MYCN amplified cells and tumor growth of the xenograft in mice. Our present findings explore the fundamental understanding of ALK in order to develop novel therapeutic tools by targeting ALK for aggressive NBL treatment.
Brain Research | 2009
Jiarong Yin; Kazuma Sakamoto; Haoqian Zhang; Zenya Ito; Shiro Imagama; Satoshi Kishida; Takamitsu Natori; Makoto Sawada; Yukihiro Matsuyama; Kenji Kadomatsu
After injury to the adult central nervous system, levels of extracellular matrix molecules increase at the injury site and may inhibit the repair of injured axons. Among these molecules, the importance of proteoglycans, particularly their chondroitin sulfate chains, has been highlighted. We have recently reported that keratan sulfate-deficient mice show better axonal regeneration after injury. Here, we investigated the regulation of keratan sulfate and chondroitin sulfate biosynthesis after neuronal injuries. Several key enzymes required for glycosaminoglycan biosynthesis (beta3GlcNAcT-7 and GlcNAc6ST-1 for keratan sulfate; CS synthase-1 and C6ST-1 for chondroitin sulfate) were expressed at significantly higher levels in the lesion 7 days after a knife-cut injury was made to the cerebral cortex in adult mice. These increases were accompanied by increased expression of TGF-beta(1) and bFGF. Since microglias at the injury sites expressed both keratan sulfate and chondroitin sulfate, the effects of these cytokines were examined in microglias. TGF-beta(1) induced the expression of the above-named enzymes in microglias, and consequently induced keratan sulfate and chondroitin sulfate biosynthesis as well as the expression of the chondroitin/keratan sulfate proteoglycan aggrecan in these cells. TGF-beta(1) also induced bFGF expression in microglias. bFGF in turn induced TGF-beta(1) expression in astrocytes. Astrocyte-conditioned medium following bFGF stimulation indeed induced keratan sulfate and chondroitin sulfate production in microglias. This production was blocked by TGF-beta(1)-neutralizing antibody. Taken together, our data indicate that the biosyntheses of keratan sulfate and chondroitin sulfate are upregulated in common by TGF-beta(1) in microglias after neuronal injuries.