Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazumasa Aoyama is active.

Publication


Featured researches published by Kazumasa Aoyama.


Blood | 2015

Ezh2 loss in hematopoietic stem cells predisposes mice to develop heterogeneous malignancies in an Ezh1-dependent manner

Makiko Mochizuki-Kashio; Kazumasa Aoyama; Goro Sashida; Motohiko Oshima; Takahisa Tomioka; Tomoya Muto; Changshan Wang; Atsushi Iwama

Recent genome sequencing revealed inactivating mutations in EZH2, which encodes an enzymatic component of polycomb-repressive complex 2 (PRC2), in patients with myelodysplastic syndrome (MDS), myeloproliferative neoplasms (MPNs), and MDS/MPN overlap disorders. We herein demonstrated that the hematopoietic-specific deletion of Ezh2 in mice induced heterogeneous hematopoietic malignancies. Myelodysplasia was detected in mice following the deletion of Ezh2, and resulted in the development of MDS and MDS/MPN. Thrombocytosis was induced by Ezh2 loss and sustained in some mice with myelodysplasia. Although less frequent, Ezh2 loss also induced T-cell acute lymphoblastic leukemia and the clonal expansion of B-1a B cells. Gene expression profiling showed that PRC2 target genes were derepressed upon the deletion of Ezh2 in hematopoietic stem and progenitor cells, but were largely repressed during the development of MDS and MDS/MPN. Chromatin immunoprecipitation-sequence analysis of trimethylation of histone H3 at lysine 27 (H3K27me3) revealed a compensatory function of Ezh1, another enzymatic component of PRC2, in this process. The deletion of Ezh1 alone did not cause dysplasia or any hematologic malignancies in mice, but abolished the repopulating capacity of hematopoietic stem cells when combined with Ezh2 loss. These results clearly demonstrated an essential role of Ezh1 in the pathogenesis of hematopoietic malignancies induced by Ezh2 insufficiency, and highlighted the differential functions of Ezh1 and Ezh2 in hematopoiesis.


Blood | 2015

Loss-of-TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator

Takuro Kameda; Kotaro Shide; Takumi Yamaji; Ayako Kamiunten; Masaaki Sekine; Yasuhiro Taniguchi; Tomonori Hidaka; Yoko Kubuki; Haruko Shimoda; Kousuke Marutsuka; Goro Sashida; Kazumasa Aoyama; Makoto Yoshimitsu; Taku Harada; Hiroo Abe; Tadashi Miike; Hisayoshi Iwakiri; Yoshihiro Tahara; Mitsue Sueta; S. Yamamoto; Satoru Hasuike; Kenji Nagata; Atsushi Iwama; Akira Kitanaka; Kazuya Shimoda

Acquired mutations of JAK2 and TET2 are frequent in myeloproliferative neoplasms (MPNs). We examined the individual and cooperative effects of these mutations on MPN development. Recipients of JAK2V617F cells developed primary myelofibrosis-like features; the addition of loss of TET2 worsened this JAK2V617F-induced disease, causing prolonged leukocytosis, splenomegaly, extramedullary hematopoiesis, and modestly shorter survival. Double-mutant (JAK2V617F plus loss of TET2) myeloid cells were more likely to be in a proliferative state than JAK2V617F single-mutant myeloid cells. In a serial competitive transplantation assay, JAK2V617F cells resulted in decreased chimerism in the second recipients, which did not develop MPNs. In marked contrast, cooperation between JAK2V617F and loss of TET2 developed and maintained MPNs in the second recipients by compensating for impaired hematopoietic stem cell (HSC) functioning. In-vitro sequential colony formation assays also supported the observation that JAK2V617F did not maintain HSC functioning over the long-term, but concurrent loss of TET2 mutation restored it. Transcriptional profiling revealed that loss of TET2 affected the expression of many HSC signature genes. We conclude that loss of TET2 has two different roles in MPNs: disease accelerator and disease initiator and sustainer in combination with JAK2V617F.


Journal of Biological Chemistry | 2013

Phosphorylation of KRAB-associated Protein 1 (KAP1) at Tyr-449, Tyr-458, and Tyr-517 by Nuclear Tyrosine Kinases Inhibits the Association of KAP1 and Heterochromatin Protein 1α (HP1α) with Heterochromatin

Sho Kubota; Yasunori Fukumoto; Kazumasa Aoyama; Kenichi Ishibashi; Ryuzaburo Yuki; Takao Morinaga; Takuya Honda; Noritaka Yamaguchi; Takahisa Kuga; Takeshi Tomonaga; Naoto Yamaguchi

Background: We showed that nuclear tyrosine phosphorylation is involved in chromatin structural changes. Results: Several tyrosine kinases phosphorylate KAP1 at Tyr-449, Tyr-458, and Tyr-517 in the nucleus, resulting in a decrease of KAP1 association with heterochromatin. Conclusion: Tyrosine phosphorylation of KAP1 by nucleus-localized tyrosine kinases, including Src, involves heterochromatin structural changes. Significance: These findings provide a new insight into nuclear tyrosine phosphorylation signals. Protein tyrosine phosphorylation regulates a wide range of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine phosphorylation by Src family kinases (SFKs) induces chromatin structural changes. In this study, we identify KRAB-associated protein 1 (KAP1/TIF1β/TRIM28), a component of heterochromatin, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of KAP1 is induced by several tyrosine kinases, such as Src, Lyn, Abl, and Brk. Among SFKs, Src strongly induces tyrosine phosphorylation of KAP1. Nucleus-targeted Lyn potentiates tyrosine phosphorylation of KAP1 compared with intact Lyn, but neither intact Fyn nor nucleus-targeted Fyn phosphorylates KAP1. Substitution of the three tyrosine residues Tyr-449/Tyr-458/Tyr-517, located close to the HP1 binding-motif, into phenylalanine ablates tyrosine phosphorylation of KAP1. Immunostaining and chromatin fractionation show that Src and Lyn decrease the association of KAP1 with heterochromatin in a kinase activity-dependent manner. KAP1 knockdown impairs the association of HP1α with heterochromatin, because HP1α associates with KAP1 in heterochromatin. Intriguingly, tyrosine phosphorylation of KAP1 decreases the association of HP1α with heterochromatin, which is inhibited by replacement of endogenous KAP1 with its phenylalanine mutant (KAP1-Y449F/Y458F/Y517F, KAP1–3YF). In DNA damage, KAP1–3YF repressed transcription of p21. These results suggest that nucleus-localized tyrosine kinases, including SFKs, phosphorylate KAP1 at Tyr-449/Tyr-458/Tyr-517 and inhibit the association of KAP1 and HP1α with heterochromatin.


Journal of Cell Science | 2013

Nuclear ErbB4 signaling through H3K9me3 is antagonized by EGFR-activated c-Src

Kenichi Ishibashi; Yasunori Fukumoto; Hitomi Hasegawa; Kohei Abe; Shoichi Kubota; Kazumasa Aoyama; Sho Kubota; Yuji Nakayama; Naoto Yamaguchi

Summary The ErbB family of receptor tyrosine kinases comprises four members: epidermal growth factor receptor (EGFR)/ErbB1, HER2/ErbB2, ErbB3 and ErbB4, and plays roles in signal transduction at the plasma membrane upon ligand stimulation. Stimulation with neuregulin-1 (NRG-1) cleaves ErbB4 and releases the ErbB4 intracellular domain (4ICD) that translocates into the nucleus to control gene expression. However, little is known about the regulation of 4ICD nuclear signaling through tyrosine phosphorylation. We show here that 4ICD nuclear signaling is antagonized by EGF-induced c-Src activation through EGFR. Generation of 4ICD by NRG-1 leads to increased levels of trimethylated histone H3 on lysine 9 (H3K9me3) in a manner dependent on the nuclear accumulation of 4ICD and its tyrosine kinase activity. Once EGF activates c-Src downstream of EGFR concomitantly with NRG-1-induced ErbB4 activation, c-Src associates with phospho-Tyr950 and phospho-Tyr1056 on 4ICD, thereby decreasing nuclear accumulation of 4ICD and inhibiting an increase of H3K9me3 levels. Moreover, 4ICD-induced transcriptional repression of the human telomerase reverse transcriptase (hTERT) is inhibited by EGF–EGFR–Src signaling. Thus, our findings reveal c-Src-mediated inhibitory regulation of ErbB4 nuclear signaling upon EGFR activation.


Experimental Cell Research | 2011

Nuclear c-Abl-mediated tyrosine phosphorylation induces chromatin structural changes through histone modifications that include H4K16 hypoacetylation.

Kazumasa Aoyama; Yasunori Fukumoto; Kenichi Ishibashi; Sho Kubota; Takao Morinaga; Yasuyoshi Horiike; Ryuzaburo Yuki; Akinori Takahashi; Yuji Nakayama; Naoto Yamaguchi

c-Abl tyrosine kinase, which is ubiquitously expressed, has three nuclear localization signals and one nuclear export signal and can shuttle between the nucleus and the cytoplasm. c-Abl plays important roles in cell proliferation, adhesion, migration, and apoptosis. Recently, we developed a pixel imaging method for quantitating the level of chromatin structural changes and showed that nuclear Src-family tyrosine kinases are involved in chromatin structural changes upon growth factor stimulation. Using this method, we show here that nuclear c-Abl induces chromatin structural changes in a manner dependent on the tyrosine kinase activity. Expression of nuclear-targeted c-Abl drastically increases the levels of chromatin structural changes, compared with that of c-Abl. Intriguingly, nuclear-targeted c-Abl induces heterochromatic profiles of histone methylation and acetylation, including hypoacetylation of histone H4 acetylated on lysine 16 (H4K16Ac). The level of heterochromatic histone modifications correlates with that of chromatin structural changes. Adriamycin-induced DNA damage stimulates translocation of c-Abl into the nucleus and induces chromatin structural changes together with H4K16 hypoacetylation. Treatment with trichostatin A, a histone deacetylase inhibitor, blocks chromatin structural changes but not nuclear tyrosine phosphorylation by c-Abl. These results suggest that nuclear c-Abl plays an important role in chromatin dynamics through nuclear tyrosine phosphorylation-induced heterochromatic histone modifications.


Journal of Experimental Medicine | 2016

The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition

Goro Sashida; Changshan Wang; Takahisa Tomioka; Motohiko Oshima; Kazumasa Aoyama; Akinori Kanai; Makiko Mochizuki-Kashio; Hironori Harada; Kazuya Shimoda; Atsushi Iwama

Loss of Ezh2 in the presence of activating mutation in JAK2 (JAK2V617F) cooperatively alters transcriptional programs of hematopoiesis, activates specific oncogenes, and promotes the development of myelofibrosis.


Journal of Biological Chemistry | 2014

Activation of the Prereplication Complex Is Blocked by Mimosine through Reactive Oxygen Species-activated Ataxia Telangiectasia Mutated (ATM) Protein without DNA Damage

Shoichi Kubota; Yasunori Fukumoto; Kenichi Ishibashi; Shuhei Soeda; Sho Kubota; Ryuzaburo Yuki; Yuji Nakayama; Kazumasa Aoyama; Noritaka Yamaguchi; Naoto Yamaguchi

Background: Mimosine is a cell synchronization reagent used for arresting cells in late G1 and S phases. Results: Replication fork assembly is reversibly blocked by ATM activation through mimosine-generated reactive oxygen species. Conclusion: Mimosine induces cell cycle arrest strictly at the G1-S phase boundary, which prevents replication fork stalling-induced DNA damage. Significance: These findings provide a novel mechanism of the mimosine-induced G1 checkpoint. Mimosine is an effective cell synchronization reagent used for arresting cells in late G1 phase. However, the mechanism underlying mimosine-induced G1 cell cycle arrest remains unclear. Using highly synchronous cell populations, we show here that mimosine blocks S phase entry through ATM activation. HeLa S3 cells are exposed to thymidine for 15 h, released for 9 h by washing out the thymidine, and subsequently treated with 1 mm mimosine for a further 15 h (thymidine → mimosine). In contrast to thymidine-induced S phase arrest, mimosine treatment synchronizes >90% of cells at the G1-S phase boundary by inhibiting the transition of the prereplication complex to the preinitiation complex. Mimosine treatment activates ataxia telangiectasia mutated (ATM)/ataxia telangiectasia and Rad3-related (ATR)-mediated checkpoint signaling without inducing DNA damage. Inhibition of ATM activity is found to induce mimosine-arrested cells to enter S phase. In addition, ATM activation by mimosine treatment is mediated by reactive oxygen species (ROS). These results suggest that, upon mimosine treatment, ATM blocks S phase entry in response to ROS, which prevents replication fork stalling-induced DNA damage.


Experimental Cell Research | 2013

Formation of long and winding nuclear F-actin bundles by nuclear c-Abl tyrosine kinase

Kazumasa Aoyama; Ryuzaburo Yuki; Yasuyoshi Horiike; Sho Kubota; Noritaka Yamaguchi; Mariko Morii; Kenichi Ishibashi; Yuji Nakayama; Takahisa Kuga; Yuuki Hashimoto; Takeshi Tomonaga; Naoto Yamaguchi

The non-receptor-type tyrosine kinase c-Abl is involved in actin dynamics in the cytoplasm. Having three nuclear localization signals (NLSs) and one nuclear export signal, c-Abl shuttles between the nucleus and the cytoplasm. Although monomeric actin and filamentous actin (F-actin) are present in the nucleus, little is known about the relationship between c-Abl and nuclear actin dynamics. Here, we show that nuclear-localized c-Abl induces nuclear F-actin formation. Adriamycin-induced DNA damage together with leptomycin B treatment accumulates c-Abl into the nucleus and increases the levels of nuclear F-actin. Treatment of c-Abl-knockdown cells with Adriamycin and leptomycin B barely increases the nuclear F-actin levels. Expression of nuclear-targeted c-Abl (NLS-c-Abl) increases the levels of nuclear F-actin even without Adriamycin, and the increased levels of nuclear F-actin are not inhibited by inactivation of Abl kinase activity. Intriguingly, expression of NLS-c-Abl induces the formation of long and winding bundles of F-actin within the nucleus in a c-Abl kinase activity-dependent manner. Furthermore, NLS-c-AblΔC, which lacks the actin-binding domain but has the full tyrosine kinase activity, is incapable of forming nuclear F-actin and in particular long and winding nuclear F-actin bundles. These results suggest that nuclear c-Abl plays critical roles in actin dynamics within the nucleus.


Blood | 2016

Setdb1 maintains hematopoietic stem and progenitor cells by restricting the ectopic activation of nonhematopoietic genes

Shuhei Koide; Motohiko Oshima; Keiyo Takubo; Satoshi Yamazaki; Eriko Nitta; Atsunori Saraya; Kazumasa Aoyama; Yuko Kato; Satoru Miyagi; Yaeko Nakajima-Takagi; Tetsuhiro Chiba; Hirotaka Matsui; Fumio Arai; Yutaka Suzuki; Hiroshi Kimura; Hiromitsu Nakauchi; Toshio Suda; Yoichi Shinkai; Atsushi Iwama

Setdb1, also known as Eset, is a methyltransferase that catalyzes trimethylation of H3K9 (H3K9me3) and plays an essential role in the silencing of endogenous retroviral elements (ERVs) in the developing embryo and embryonic stem cells (ESCs). Its role in somatic stem cells, however, remains unclear because of the early death of Setdb1-deficient embryos. We demonstrate here that Setdb1 is the first H3K9 methyltransferase shown to be essential for the maintenance of hematopoietic stem and progenitor cells (HSPCs) in mice. The deletion of Setdb1 caused the rapid depletion of hematopoietic stem and progenitor cells (HSPCs), as well as leukemic stem cells. In contrast to ESCs, ERVs were largely repressed in Setdb1-deficient HSPCs. A list of nonhematopoietic genes was instead ectopically activated in HSPCs after reductions in H3K9me3 levels, including key gluconeogenic enzyme genes fructose-1,6-bisphosphatase 1 (Fbp1) and Fbp2 The ectopic activation of gluconeogenic enzymes antagonized glycolysis and impaired ATP production, resulting in a compromised repopulating capacity of HSPCs. Our results demonstrate that Setdb1 maintains HSPCs by restricting the ectopic activation of nonhematopoietic genes detrimental to their function and uncover that the gluconeogenic pathway is one of the critical targets of Setdb1 in HSPCs.


PLOS ONE | 2016

Loss of Pcgf5 Affects Global H2A Monoubiquitination but Not the Function of Hematopoietic Stem and Progenitor Cells

Sha Si; Yaeko Nakajima-Takagi; Kazumasa Aoyama; Motohiko Oshima; Atsunori Saraya; Hiroki Sugishita; Manabu Nakayama; Tomoyuki Ishikura; Haruhiko Koseki; Atsushi Iwama

Polycomb-group RING finger proteins (Pcgf1-Pcgf6) are components of Polycomb repressive complex 1 (PRC1)-related complexes that catalyze monoubiquitination of histone H2A at lysine 119 (H2AK119ub1), an epigenetic mark associated with repression of genes. Pcgf5 has been characterized as a component of PRC1.5, one of the non-canonical PRC1, consisting of Ring1a/b, Rybp/Yaf2 and Auts2. However, the biological functions of Pcgf5 have not yet been identified. Here we analyzed the impact of the deletion of Pcgf5 specifically in hematopoietic stem and progenitor cells (HSPCs). Pcgf5 is expressed preferentially in hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) compared with committed myeloid progenitors and differentiated cells. We transplanted bone marrow (BM) cells from Rosa::Cre-ERT control and Cre-ERT;Pcgf5fl/fl mice into lethally irradiated recipient mice. At 4 weeks post-transplantation, we deleted Pcgf5 by injecting tamoxifen, however, no obvious changes in hematopoiesis were detected including the number of HSPCs during a long-term observation period following the deletion. Competitive BM repopulating assays revealed normal repopulating capacity of Pcgf5-deficient HSCs. Nevertheless, Pcgf5-deficient HSPCs showed a significant reduction in H2AK119ub1 levels compared with the control. ChIP-sequence analysis confirmed the reduction in H2AK119ub1 levels, but revealed no significant association of changes in H2AK119ub1 levels with gene expression levels. Our findings demonstrate that Pcgf5-containing PRC1 functions as a histone modifier in vivo, but its role in HSPCs is limited and can be compensated by other PRC1-related complexes in HSPCs.

Collaboration


Dive into the Kazumasa Aoyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge