Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Motohiko Oshima is active.

Publication


Featured researches published by Motohiko Oshima.


Journal of Experimental Medicine | 2013

Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders

Tomoya Muto; Goro Sashida; Motohiko Oshima; George R. Wendt; Makiko Mochizuki-Kashio; Yasunobu Nagata; Masashi Sanada; Satoru Miyagi; Atsunori Saraya; Asuka Kamio; Genta Nagae; Chiaki Nakaseko; Koutaro Yokote; Kazuya Shimoda; Haruhiko Koseki; Yutaka Suzuki; Sumio Sugano; Hiroyuki Aburatani; Seishi Ogawa; Atsushi Iwama

Deletion of Ezh2 results in transcriptional repression of developmental regulator genes, derepression of oncogenic polycomb targets, and induction of MDS/MPN-like disease in mice that is exacerbated by concurrent deletion of Tet2.


Nature Communications | 2014

Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation

Goro Sashida; Hironori Harada; Hirotaka Matsui; Motohiko Oshima; Makiko Yui; Yuka Harada; Satomi Tanaka; Makiko Mochizuki-Kashio; Changshan Wang; Atsunori Saraya; Tomoya Muto; Yoshihiro Hayashi; Kotaro Suzuki; Hiroshi Nakajima; Toshiya Inaba; Haruhiko Koseki; Gang Huang; Toshio Kitamura; Atsushi Iwama

Loss-of-function mutations of EZH2, a catalytic component of polycomb repressive complex 2 (PRC2), are observed in ~\n10% of patients with myelodysplastic syndrome (MDS), but are rare in acute myeloid leukaemia (AML). Recent studies have shown that EZH2 mutations are often associated with RUNX1 mutations in MDS patients, although its pathological function remains to be addressed. Here we establish an MDS mouse model by transducing a RUNX1S291fs mutant into hematopoietic stem cells and subsequently deleting Ezh2. Ezh2 loss significantly promotes RUNX1S291fs-induced MDS. Despite their compromised proliferative capacity of RUNX1S291fs/Ezh2-null MDS cells, MDS bone marrow impairs normal hematopoietic cells via selectively activating inflammatory cytokine responses, thereby allowing propagation of MDS clones. In contrast, loss of Ezh2 prevents the transformation of AML via PRC1-mediated repression of Hoxa9. These findings provide a comprehensive picture of how Ezh2 loss collaborates with RUNX1 mutants in the pathogenesis of MDS in both cell autonomous and non-autonomous manners.


Blood | 2013

Role of SOX17 in hematopoietic development from human embryonic stem cells

Yaeko Nakajima-Takagi; Mitsujiro Osawa; Motohiko Oshima; Haruna Takagi; Satoru Miyagi; Mitsuhiro Endoh; Takaho A. Endo; Naoya Takayama; Koji Eto; Tetsuro Toyoda; Haruhiko Koseki; Hiromitsu Nakauchi; Atsushi Iwama

To search for genes that promote hematopoietic development from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), we overexpressed several known hematopoietic regulator genes in hESC/iPSC-derived CD34(+)CD43(-) endothelial cells (ECs) enriched in hemogenic endothelium (HE). Among the genes tested, only Sox17, a gene encoding a transcription factor of the SOX family, promoted cell growth and supported expansion of CD34(+)CD43(+)CD45(-/low) cells expressing the HE marker VE-cadherin. SOX17 was expressed at high levels in CD34(+)CD43(-) ECs compared with low levels in CD34(+)CD43(+)CD45(-) pre-hematopoietic progenitor cells (pre-HPCs) and CD34(+)CD43(+)CD45(+) HPCs. Sox17-overexpressing cells formed semiadherent cell aggregates and generated few hematopoietic progenies. However, they retained hemogenic potential and gave rise to hematopoietic progenies on inactivation of Sox17. Global gene-expression analyses revealed that the CD34(+)CD43(+)CD45(-/low) cells expanded on overexpression of Sox17 are HE-like cells developmentally placed between ECs and pre-HPCs. Sox17 overexpression also reprogrammed both pre-HPCs and HPCs into HE-like cells. Genome-wide mapping of Sox17-binding sites revealed that Sox17 activates the transcription of key regulator genes for vasculogenesis, hematopoiesis, and erythrocyte differentiation directly. Depletion of SOX17 in CD34(+)CD43(-) ECs severely compromised their hemogenic activity. These findings suggest that SOX17 plays a key role in priming hemogenic potential in ECs, thereby regulating hematopoietic development from hESCs/iPSCs.


PLOS ONE | 2013

Metformin, a Diabetes Drug, Eliminates Tumor-Initiating Hepatocellular Carcinoma Cells

Tomoko Saito; Tetsuhiro Chiba; Kaori Yuki; Yoh Zen; Motohiko Oshima; Shuhei Koide; Tenyu Motoyama; Sadahisa Ogasawara; Eiichiro Suzuki; Yoshihiko Ooka; Akinobu Tawada; Motohisa Tada; Fumihiko Kanai; Yuichi Takiguchi; Atsushi Iwama; Osamu Yokosuka

Metformin has been widely used as an oral drug for diabetes mellitus for approximately 60 years. Interestingly, recent reports showed that metformin exhibited an anti-tumor action in a wide range of malignancies including hepatocellular carcinoma (HCC). In the present study, we investigated its impact on tumor-initiating HCC cells. Metformin suppressed cell growth and induced apoptosis in a dose-dependent manner. Flow cytometric analysis showed that metformin treatment markedly reduced the number of tumor-initiating epithelial cell adhesion molecule (EpCAM)+ HCC cells. Non-adherent sphere formation assays of EpCAM+ cells showed that metformin impaired not only their sphere-forming ability, but also their self-renewal capability. Consistent with this, immunostaining of spheres revealed that metformin significantly decreased the number of component cells positive for hepatic stem cell markers such as EpCAM and α-fetoprotein. In a xenograft transplantation model using non-obese diabetic/severe combined immunodeficient mice, metformin and/or sorafenib treatment suppressed the growth of tumors derived from transplanted HCC cells. Notably, the administration of metformin but not sorafenib decreased the number of EpCAM+ cells and impaired their self-renewal capability. As reported, metformin activated AMP-activated protein kinase (AMPK) through phosphorylation; however its inhibitory effect on the mammalian target of rapamycin (mTOR) pathway did not necessarily correlate with its anti-tumor activity toward EpCAM+ tumor-initiating HCC cells. These results indicate that metformin is a promising therapeutic agent for the elimination of tumor-initiating HCC cells and suggest as-yet-unknown functions other than its inhibitory effect on the AMPK/mTOR pathway.


Blood | 2015

Ezh2 loss in hematopoietic stem cells predisposes mice to develop heterogeneous malignancies in an Ezh1-dependent manner

Makiko Mochizuki-Kashio; Kazumasa Aoyama; Goro Sashida; Motohiko Oshima; Takahisa Tomioka; Tomoya Muto; Changshan Wang; Atsushi Iwama

Recent genome sequencing revealed inactivating mutations in EZH2, which encodes an enzymatic component of polycomb-repressive complex 2 (PRC2), in patients with myelodysplastic syndrome (MDS), myeloproliferative neoplasms (MPNs), and MDS/MPN overlap disorders. We herein demonstrated that the hematopoietic-specific deletion of Ezh2 in mice induced heterogeneous hematopoietic malignancies. Myelodysplasia was detected in mice following the deletion of Ezh2, and resulted in the development of MDS and MDS/MPN. Thrombocytosis was induced by Ezh2 loss and sustained in some mice with myelodysplasia. Although less frequent, Ezh2 loss also induced T-cell acute lymphoblastic leukemia and the clonal expansion of B-1a B cells. Gene expression profiling showed that PRC2 target genes were derepressed upon the deletion of Ezh2 in hematopoietic stem and progenitor cells, but were largely repressed during the development of MDS and MDS/MPN. Chromatin immunoprecipitation-sequence analysis of trimethylation of histone H3 at lysine 27 (H3K27me3) revealed a compensatory function of Ezh1, another enzymatic component of PRC2, in this process. The deletion of Ezh1 alone did not cause dysplasia or any hematologic malignancies in mice, but abolished the repopulating capacity of hematopoietic stem cells when combined with Ezh2 loss. These results clearly demonstrated an essential role of Ezh1 in the pathogenesis of hematopoietic malignancies induced by Ezh2 insufficiency, and highlighted the differential functions of Ezh1 and Ezh2 in hematopoiesis.


Blood | 2011

Genome-wide analysis of target genes regulated by HoxB4 in hematopoietic stem and progenitor cells developing from embryonic stem cells

Motohiko Oshima; Mitsuhiro Endoh; Takaho A. Endo; Tetsuro Toyoda; Yaeko Nakajima-Takagi; Fumihiro Sugiyama; Haruhiko Koseki; Michael Kyba; Atsushi Iwama; Mitsujiro Osawa

Forced expression of the transcription factor HoxB4 has been shown to enhance the self-renewal capacity of mouse bone marrow hematopoietic stem cells (HSCs) and confer a long-term repopulating capacity to yolk sac and embryonic stem (ES) cell-derived hematopoietic precursors. The fact that ES cell-derived precursors do not repopulate bone marrow without HoxB4 underscores an important role for HoxB4 in the maturation of ES-derived hematopoietic precursors into long-term repopulating HSCs. However, the precise molecular mechanism underlying this process is barely understood. In this study, we performed a genome-wide analysis of HoxB4 using ES cell-derived hematopoietic stem/progenitor cells. The results revealed many of the genes essential for HSC development to be direct targets of HoxB4, such as Runx1, Scl/Tal1, Gata2, and Gfi1. The expression profiling also showed that HoxB4 indirectly affects the expression of several important genes, such as Lmo2, Erg, Meis1, Pbx1, Nov, AhR, and Hemgn. HoxB4 tended to activate the transcription, but the down-regulation of a significant portion of direct targets suggested its function to be context-dependent. These findings indicate that HoxB4 reprograms a set of key regulator genes to facilitate the maturation of developing HSCs into repopulating cells. Our list of HoxB4 targets also provides novel candidate regulators for HSCs.


PLOS ONE | 2014

Disulfiram Eradicates Tumor-Initiating Hepatocellular Carcinoma Cells in ROS-p38 MAPK Pathway-Dependent and -Independent Manners

Tetsuhiro Chiba; Eiichiro Suzuki; Kaori Yuki; Yoh Zen; Motohiko Oshima; Satoru Miyagi; Atsunori Saraya; Shuhei Koide; Tenyu Motoyama; Sadahisa Ogasawara; Yoshihiko Ooka; Akinobu Tawada; Tetsuya Nakatsura; Takehiro Hayashi; Taro Yamashita; Syuichi Kaneko; Masaru Miyazaki; Atsushi Iwama; Osamu Yokosuka

Tumor-initiating cells (TICs) play a central role in tumor development, metastasis, and recurrence. In the present study, we investigated the effect of disulfiram (DSF), an inhibitor of aldehyde dehydrogenase, toward tumor-initiating hepatocellular carcinoma (HCC) cells. DSF treatment suppressed the anchorage-independent sphere formation of both HCC cells. Flow cytometric analyses showed that DSF but not 5-fluorouracil (5-FU) drastically reduces the number of tumor-initiating HCC cells. The sphere formation assays of epithelial cell adhesion molecule (EpCAM)+ HCC cells co-treated with p38-specific inhibitor revealed that DSF suppresses self-renewal capability mainly through the activation of reactive oxygen species (ROS)-p38 MAPK pathway. Microarray experiments also revealed the enrichment of the gene set involved in p38 MAPK signaling in EpCAM+ cells treated with DSF but not 5-FU. In addition, DSF appeared to downregulate Glypican 3 (GPC3) in a manner independent of ROS-p38 MAPK pathway. GPC3 was co-expressed with EpCAM in HCC cell lines and primary HCC cells and GPC3-knockdown reduced the number of EpCAM+ cells by compromising their self-renewal capability and inducing the apoptosis. These results indicate that DSF impaired the tumorigenicity of tumor-initiating HCC cells through activation of ROS-p38 pathway and in part through the downregulation of GPC3. DSF might be a promising therapeutic agent for the eradication of tumor-initiating HCC cells.


Blood | 2014

Depletion of Sf3b1 impairs proliferative capacity of hematopoietic stem cells but is not sufficient to induce myelodysplasia

Changshan Wang; Goro Sashida; Atsunori Saraya; Reiko Ishiga; Shuhei Koide; Motohiko Oshima; Kyoichi Isono; Haruhiko Koseki; Atsushi Iwama

Numerous studies have recently reported mutations involving multiple components of the messenger RNA (mRNA) splicing machinery in patients with myelodysplastic syndrome (MDS). SF3B1 is mutated in 70% to 85% of refractory anemia with ringed sideroblasts (RARS) patients and is highly associated with the presence of RARS, although the pathological role of SF3B1 mutations in MDS-RARS has not been elucidated yet. Here, we analyzed the function of pre-mRNA splicing factor Sf3b1 in hematopoiesis. Sf3b1(+/-) mice maintained almost normal hematopoiesis and did not develop hematological malignancies during a long observation period. However, Sf3b1(+/-) cells had a significantly impaired capacity to reconstitute hematopoiesis in a competitive setting and exhibited some enhancement of apoptosis, but they did not show any obvious defects in differentiation. Additional depletion of Sf3b1 with shRNA in Sf3b1(+/-) hematopoietic stem cells (HSCs) severely compromised their proliferative capacity both in vitro and in vivo. Finally, we unexpectedly found no changes in the frequencies of sideroblasts in either Sf3b1(+/-) erythroblasts or cultured Sf3b1(+/-) erythroblasts expressing shRNA against Sf3b1. Our findings indicate that the level of Sf3b1 expression is critical for the proliferative capacity of HSCs, but the haploinsufficiency for Sf3b1 is not sufficient to induce a RARS-like phenotype.


PLOS ONE | 2012

Bmi1 Confers Resistance to Oxidative Stress on Hematopoietic Stem Cells

Shunsuke Nakamura; Motohiko Oshima; Jin Yuan; Atsunori Saraya; Satoru Miyagi; Takaaki Konuma; Satoshi Yamazaki; Mitsujiro Osawa; Hiromitsu Nakauchi; Haruhiko Koseki; Atsushi Iwama

Background The polycomb-group (PcG) proteins function as general regulators of stem cells. We previously reported that retrovirus-mediated overexpression of Bmi1, a gene encoding a core component of polycomb repressive complex (PRC) 1, maintained self-renewing hematopoietic stem cells (HSCs) during long-term culture. However, the effects of overexpression of Bmi1 on HSCs in vivo remained to be precisely addressed. Methodology/Principal findings In this study, we generated a mouse line where Bmi1 can be conditionally overexpressed under the control of the endogenous Rosa26 promoter in a hematopoietic cell-specific fashion (Tie2-Cre;R26StopFLBmi1). Although overexpression of Bmi1 did not significantly affect steady state hematopoiesis, it promoted expansion of functional HSCs during ex vivo culture and efficiently protected HSCs against loss of self-renewal capacity during serial transplantation. Overexpression of Bmi1 had no effect on DNA damage response triggered by ionizing radiation. In contrast, Tie2-Cre;R26StopFLBmi1 HSCs under oxidative stress maintained a multipotent state and generally tolerated oxidative stress better than the control. Unexpectedly, overexpression of Bmi1 had no impact on the level of intracellular reactive oxygen species (ROS). Conclusions/Significance Our findings demonstrate that overexpression of Bmi1 confers resistance to stresses, particularly oxidative stress, onto HSCs. This thereby enhances their regenerative capacity and suggests that Bmi1 is located downstream of ROS signaling and negatively regulated by it.


Journal of Experimental Medicine | 2016

The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition

Goro Sashida; Changshan Wang; Takahisa Tomioka; Motohiko Oshima; Kazumasa Aoyama; Akinori Kanai; Makiko Mochizuki-Kashio; Hironori Harada; Kazuya Shimoda; Atsushi Iwama

Loss of Ezh2 in the presence of activating mutation in JAK2 (JAK2V617F) cooperatively alters transcriptional programs of hematopoiesis, activates specific oncogenes, and promotes the development of myelofibrosis.

Collaboration


Dive into the Motohiko Oshima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge