Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazumi Ebine is active.

Publication


Featured researches published by Kazumi Ebine.


Scientific Reports | 2015

GLI2-dependent c-MYC upregulation mediates resistance of pancreatic cancer cells to the BET bromodomain inhibitor JQ1

Krishan Kumar; Sania S. Raza; Lawrence M. Knab; Christina R. Chow; Benjamin Kwok; David J. Bentrem; Relja Popovic; Kazumi Ebine; Jonathan D. Licht; Hidayatullah G. Munshi

JQ1 and I-BET151 are selective inhibitors of BET bromodomain proteins that have efficacy against a number of different cancers. Since the effectiveness of targeted therapies is often limited by development of resistance, we examined whether it was possible for cancer cells to develop resistance to the BET inhibitor JQ1. Here we show that pancreatic cancer cells developing resistance to JQ1 demonstrate cross-resistance to I-BET151 and insensitivity to BRD4 downregulation. The resistant cells maintain expression of c-MYC, increase expression of JQ1-target genes FOSL1 and HMGA2, and demonstrate evidence of epithelial-mesenchymal transition (EMT). However, reverting EMT fails to sensitize the resistant cells to JQ1 treatment. Importantly, the JQ1-resistant cells remain dependent on c-MYC that now becomes co-regulated by high levels of GLI2. Furthermore, downregulating GLI2 re-sensitizes the resistant cells to JQ1. Overall, these results identify a mechanism by which cancer cells develop resistance to BET inhibitors.


Molecular Cancer Therapeutics | 2014

BET Bromodomain Inhibitors Block Growth of Pancreatic Cancer Cells in Three-Dimensional Collagen

Vaibhav Sahai; Krishan Kumar; Lawrence M. Knab; Christina R. Chow; Sania S. Raza; David J. Bentrem; Kazumi Ebine; Hidayatullah G. Munshi

Pancreatic ductal adenocarcinoma (PDAC) is associated with pronounced fibrosis that contributes to chemoresistance, in part, through increased histone acetylation. Because bromodomain (BRD) and extra terminal domain (BET) proteins are “readers” of histone acetylation marks, we targeted BET proteins in PDAC cells grown in three-dimensional collagen. We show that treatment with BET inhibitors decreases growth of PDAC cells (AsPC1, CD18, and Panc1) in collagen. Transfection with siRNA against BRD4, which is increased in human PDAC tumors, also decreases growth of PDAC cells. BET inhibitors additionally decrease growth in collagen of PDAC cells that have undergone epithelial-to-mesenchymal transition or have become resistant to chemotherapy. Although BET inhibitors and BRD4 siRNA repress c-MYC only in AsPC1 and CD18 cells, downregulating c-MYC decreases growth of all three PDAC cell lines in collagen. FOSL1, which is also targeted by BET inhibitors and BRD4 siRNA in AsPC1, CD18, and Panc1 cells, additionally regulates growth of all three PDAC cell lines in collagen. BET inhibitors and BRD4 siRNA repress HMGA2, an architectural protein that modulates chromatin state and also contributes to chemoresistance, in PDAC cells grown in collagen. Importantly, we show that there is a statistically significant correlation between BRD4 and HMGA2 in human PDAC tumors. Significantly, overexpression of HMGA2 partially mitigates the effect of BET inhibitors on growth and c-MYC and/or FOSL1 expression in collagen. Overall, these results demonstrate that BET inhibitors block growth of PDAC cells in collagen and that BET proteins may be potential targets for the treatment of pancreatic cancer. Mol Cancer Ther; 13(7); 1907–17. ©2014 AACR.


PLOS ONE | 2013

Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression.

Surabhi Dangi-Garimella; Vaibhav Sahai; Kazumi Ebine; Krishan Kumar; Hidayatullah G. Munshi

Pancreatic ductal adenocarcinoma (PDAC) is associated with a pronounced collagen-rich stromal reaction that has been shown to contribute to chemo-resistance. We have previously shown that PDAC cells are resistant to gemcitabine chemotherapy in the collagen microenvironment because of increased expression of the chromatin remodeling protein high mobility group A2 (HMGA2). We have now found that human PDAC tumors display higher levels of histone H3K9 and H3K27 acetylation in fibrotic regions. We show that relative to cells grown on tissue culture plastic, PDAC cells grown in three-dimensional collagen gels demonstrate increased histone H3K9 and H3K27 acetylation, along with increased expression of p300, PCAF and GCN5 histone acetyltransferases (HATs). Knocking down HMGA2 attenuates the effect of collagen on histone H3K9 and H3K27 acetylation and on collagen-induced p300, PCAF and GCN5 expression. We also show that human PDAC tumors with HMGA2 demonstrate increased histone H3K9 and H3K27 acetylation. Additionally, we show that cells in three-dimensional collagen gels demonstrate increased protection against gemcitabine. Significantly, down-regulation of HMGA2 or p300, PCAF and GCN5 HATs sensitizes the cells to gemcitabine in three-dimensional collagen. Overall, our results increase our understanding of how the collagen microenvironment contributes to chemo-resistance in vitro and identify HATs as potential therapeutic targets against this deadly cancer.


Molecular Cancer Research | 2013

Snail cooperates with KrasG12D to promote pancreatic fibrosis

Mario A. Shields; Kazumi Ebine; Vaibhav Sahai; Krishan Kumar; Kulsumjehan Siddiqui; Rosa F. Hwang; Paul J. Grippo; Hidayatullah G. Munshi

Patients with pancreatic cancer, which is characterized by an extensive collagen-rich fibrotic reaction, often present with metastases. A critical step in cancer metastasis is epithelial-to-mesenchymal transition (EMT), which can be orchestrated by the Snail family of transcription factors. To understand the role of Snail (SNAI1) in pancreatic cancer development, we generated transgenic mice expressing Snail in the pancreas. Because chronic pancreatitis can contribute to pancreatic cancer development, Snail-expressing mice were treated with cerulein to induce pancreatitis. Although significant tissue injury was observed, a minimal difference in pancreatitis was seen between control and Snail-expressing mice. However, because Kras mutation is necessary for tumor development in mouse models of pancreatic cancer, we generated mice expressing both mutant KrasG12D and Snail (Kras+/Snail+). Compared with control mice (Kras+/Snai−), Kras+/Snail+ mice developed acinar ectasia and more advanced acinar-to-ductal metaplasia. The Kras+/Snail+ mice exhibited increased fibrosis, increased phosphorylated Smad2, increased TGF-β2 expression, and activation of pancreatic stellate cells. To further understand the mechanism by which Snail promoted fibrosis, we established an in vitro model to examine the effect of Snail expression in pancreatic cancer cells on stellate cell collagen production. Snail expression in pancreatic cancer cells increased TGF-β2 levels, and conditioned media from Snail-expressing pancreatic cancer cells increased collagen production by stellate cells. Additionally, inhibiting TGF-β signaling in stellate cells attenuated the conditioned media–induced collagen production by stellate cells. Together, these results suggest that Snail contributes to pancreatic tumor development by promoting fibrotic reaction through increased TGF-β signaling. Implications: Expression of the EMT regulator Snail in the context of mutant Kras provides new insight into pancreatic cancer progression. Mol Cancer Res; 11(9); 1078–87. ©2013 AACR.


Molecular Cancer Research | 2014

Snail Cooperates with KrasG12D In Vivo to Increase Stem Cell Factor and Enhance Mast Cell Infiltration

Lawrence M. Knab; Kazumi Ebine; Christina R. Chow; Sania S. Raza; Vaibhav Sahai; Akash P. Patel; Krishan Kumar; David J. Bentrem; Paul J. Grippo; Hidayatullah G. Munshi

Pancreatic ductal adenocarcinoma (PDAC) is associated with a pronounced fibro-inflammatory stromal reaction that contributes to tumor progression. A critical step in invasion and metastasis is the epithelial-to-mesenchymal transition (EMT), which can be regulated by the Snail family of transcription factors. Overexpression of Snail (Snai1) and mutant KrasG12D in the pancreas of transgenic mice, using an elastase (EL) promoter, resulted in fibrosis. To identify how Snail modulates inflammation in the pancreas, we examined the effect of expressing Snail in EL-KrasG12D mice (KrasG12D/Snail) on mast cell infiltration, which has been linked to PDAC progression. Using this animal model system, it was demonstrated that there are increased numbers of mast cells in the pancreas of KrasG12D/Snail mice compared with control KrasG12D mice. In addition, it was revealed that human primary PDAC tumors with increased Snail expression are associated with increased mast cell infiltration, and that Snail expression in these clinical specimens positively correlated with the expression of stem cell factor (SCF/KITLG), a cytokine known to regulate mast cell migration. Concomitantly, SCF levels are increased in the KrasG12D/Snail mice than in control mice. Moreover, overexpression of Snail in PDAC cells increased SCF levels, and the media conditioned by Snail-expressing PDAC cells promoted mast cell migration. Finally, inhibition of SCF using a neutralizing antibody significantly attenuated Snail-induced migration of mast cells. Implications: Together, these results elucidate how the EMT regulator Snail contributes to inflammation associated with PDAC tumors. Mol Cancer Res; 12(10); 1440–8. ©2014 AACR.


Molecular Cancer Research | 2016

Differential Regulation of ZEB1 and EMT by MAPK-Interacting Protein Kinases (MNK) and eIF4E in Pancreatic Cancer

Krishan Kumar; Christina R. Chow; Kazumi Ebine; Ahmet Dirim Arslan; Benjamin Kwok; David J. Bentrem; Frank Eckerdt; Leonidas C. Platanias; Hidayatullah G. Munshi

Human pancreatic ductal adenocarcinoma (PDAC) tumors are associated with dysregulation of mRNA translation. In this report, it is demonstrated that PDAC cells grown in collagen exhibit increased activation of the MAPK-interacting protein kinases (MNK) that mediate eIF4E phosphorylation. Pharmacologic and genetic targeting of MNKs reverse epithelial–mesenchymal transition (EMT), decrease cell migration, and reduce protein expression of the EMT-regulator ZEB1 without affecting ZEB1 mRNA levels. Paradoxically, targeting eIF4E, the best-characterized effector of MNKs, increases ZEB1 mRNA expression through repression of ZEB1-targeting miRNAs, miR-200c and miR-141. In contrast, targeting the MNK effector hnRNPA1, which can function as a translational repressor, increases ZEB1 protein without increasing ZEB1 mRNA levels. Importantly, treatment with MNK inhibitors blocks growth of chemoresistant PDAC cells in collagen and decreases the number of aldehyde dehydrogenase activity–positive (Aldefluor+) cells. Significantly, MNK inhibitors increase E-cadherin mRNA levels and decrease vimentin mRNA levels in human PDAC organoids without affecting ZEB1 mRNA levels. Importantly, MNK inhibitors also decrease growth of human PDAC organoids. Implications: These results demonstrate differential regulation of ZEB1 and EMT by MNKs and eIF4E, and identify MNKs as potential targets in pancreatic cancer. Mol Cancer Res; 14(2); 216–27. ©2015 AACR.


JCI insight | 2017

BET inhibitors block pancreatic stellate cell collagen I production and attenuate fibrosis in vivo

Krishan Kumar; Brian DeCant; Paul J. Grippo; Rosa F. Hwang; David J. Bentrem; Kazumi Ebine; Hidayatullah G. Munshi

The fibrotic reaction, which can account for over 70%-80% of the tumor mass, is a characteristic feature of human pancreatic ductal adenocarcinoma (PDAC) tumors. It is associated with activation and proliferation of pancreatic stellate cells (PSCs), which are key regulators of collagen I production and fibrosis in vivo. In this report, we show that members of the bromodomain and extraterminal (BET) family of proteins are expressed in primary PSCs isolated from human PDAC tumors, with BRD4 positively regulating, and BRD2 and BRD3 negatively regulating, collagen I expression in primary cancer-associated PSCs. We show that the inhibitory effect of pan-BET inhibitors on collagen I expression in primary cancer-associated PSCs is through blocking of BRD4 function. Importantly, we show that FOSL1 is repressed by BRD4 in primary cancer-associated PSCs and negatively regulates collagen I expression. While BET inhibitors do not affect viability or induce PSC apoptosis or senescence, BET inhibitors induce primary cancer-associated PSCs to become quiescent. Finally, we show that BET inhibitors attenuate stellate cell activation, fibrosis, and collagen I production in the EL-KrasG12D transgenic mouse model of pancreatic tumorigenesis. Our results demonstrate that BET inhibitors regulate fibrosis by modulating the activation and function of cancer-associated PSCs.


Journal of Biological Chemistry | 2016

Cancer Cell Invasion in Three-dimensional Collagen Is Regulated Differentially by Gα13 Protein and Discoidin Domain Receptor 1-Par3 Protein Signaling.

Christina R. Chow; Kazumi Ebine; Lawrence M. Knab; David J. Bentrem; Krishan Kumar; Hidayatullah G. Munshi

Background: The role of Gα13 in mediating invasion in three-dimensional collagen is not well known. Results: Gα13 promotes invasion in three-dimensional collagen by disrupting cell-cell adhesion, whereas DDR1-Par3 signaling counteracts the effects of Gα13 by enhancing cell-cell adhesion. Conclusion: Gα13 and DDR1-Par3 differentially regulate cell-cell junctions to mediate three-dimensional invasion. Significance: Better understanding of how cells invade in three-dimensional collagen may identify potential therapeutic targets. Cancer cells can invade in three-dimensional collagen as single cells or as a cohesive group of cells that require coordination of cell-cell junctions and the actin cytoskeleton. To examine the role of Gα13, a G12 family heterotrimeric G protein, in regulating cellular invasion in three-dimensional collagen, we established a novel method to track cell invasion by membrane type 1 matrix metalloproteinase-expressing cancer cells. We show that knockdown of Gα13 decreased membrane type 1 matrix metalloproteinase-driven proteolytic invasion in three-dimensional collagen and enhanced E-cadherin-mediated cell-cell adhesion. E-cadherin knockdown reversed Gα13 siRNA-induced cell-cell adhesion but failed to reverse the effect of Gα13 siRNA on proteolytic invasion. Instead, concurrent knockdown of E-cadherin and Gα13 led to an increased number of single cells rather than groups of cells. Significantly, knockdown of discoidin domain receptor 1 (DDR1), a collagen-binding protein that also co-localizes to cell-cell junctions, reversed the effects of Gα13 knockdown on cell-cell adhesion and proteolytic invasion in three-dimensional collagen. Knockdown of the polarity protein Par3, which can function downstream of DDR1, also reversed the effects of Gα13 knockdown on cell-cell adhesion and proteolytic invasion in three-dimensional collagen. Overall, we show that Gα13 and DDR1-Par3 differentially regulate cell-cell junctions and the actin cytoskeleton to mediate invasion in three-dimensional collagen.


Scientific Reports | 2016

Interaction of tRNA with MEK2 in pancreatic cancer cells

Xiaoyun Wang; Christina R. Chow; Kazumi Ebine; Jiyoung Lee; Marsha Rich Rosner; Tao Pan; Hidayatullah G. Munshi

Although the translational function of tRNA has long been established, extra translational functions of tRNA are still being discovered. We previously developed a computational method to systematically predict new tRNA-protein complexes and experimentally validated six candidate proteins, including the mitogen-activated protein kinase kinase 2 (MEK2), that interact with tRNA in HEK293T cells. However, consequences of the interaction between tRNA and these proteins remain to be elucidated. Here we tested the consequence of the interaction between tRNA and MEK2 in pancreatic cancer cell lines. We also generated disease and drug resistance-derived MEK2 mutants (Q60P, P128Q, S154F, E207K) to evaluate the function of the tRNA-MEK2 interaction. Our results demonstrate that tRNA interacts with the wild-type and mutant MEK2 in pancreatic cancer cells; furthermore, the MEK2 inhibitor U0126 significantly reduces the tRNA-MEK2 interaction. In addition, tRNA affects the catalytic activity of the wild type and mutant MEK2 proteins in different ways. Overall, our findings demonstrate the interaction of tRNA with MEK2 in pancreatic cancer cells and suggest that tRNA may impact MEK2 activity in cancer cells.


Scientific Reports | 2016

Slug inhibits pancreatic cancer initiation by blocking Kras-induced acinar-ductal metaplasia.

Kazumi Ebine; Christina R. Chow; Brian DeCant; Holly Z. Hattaway; Paul J. Grippo; Krishan Kumar; Hidayatullah G. Munshi

Cells in the pancreas that have undergone acinar-ductal metaplasia (ADM) can transform into premalignant cells that can eventually become cancerous. Although the epithelial-mesenchymal transition regulator Snail (Snai1) can cooperate with Kras in acinar cells to enhance ADM development, the contribution of Snail-related protein Slug (Snai2) to ADM development is not known. Thus, transgenic mice expressing Slug and Kras in acinar cells were generated. Surprisingly, Slug attenuated Kras-induced ADM development, ERK1/2 phosphorylation and proliferation. Co-expression of Slug with Kras also attenuated chronic pancreatitis-induced changes in ADM development and fibrosis. In addition, Slug attenuated TGF-α-induced acinar cell metaplasia to ductal structures and TGF-α-induced expression of ductal markers in ex vivo acinar explant cultures. Significantly, blocking the Rho-associated protein kinase ROCK1/2 in the ex vivo cultures induced expression of ductal markers and reversed the effects of Slug by inducing ductal structures. In addition, blocking ROCK1/2 activity in Slug-expressing Kras mice reversed the inhibitory effects of Slug on ADM, ERK1/2 phosphorylation, proliferation and fibrosis. Overall, these results increase our understanding of the role of Slug in ADM, an early event that can eventually lead to pancreatic cancer development.

Collaboration


Dive into the Kazumi Ebine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. Grippo

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian DeCant

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meng Shang

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge