Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuo Imaizumi is active.

Publication


Featured researches published by Kazuo Imaizumi.


Neuroscience | 2004

TONOTOPIC AND HETEROTOPIC PROJECTION SYSTEMS IN PHYSIOLOGICALLY DEFINED AUDITORY CORTEX

Charles C. Lee; Christoph E. Schreiner; Kazuo Imaizumi; Jeffery A. Winer

Combined physiological and connectional studies show significant non-topographic extrinsic projections to frequency-specific domains in the cat auditory cortex. These frequency-mismatched loci in the thalamus, ipsilateral cortex, and commissural system complement the predicted topographic and tonotopic projections. Two tonotopic areas, the primary auditory cortex (AI) and the anterior auditory field (AAF), were electrophysiologically characterized by their frequency organization. Next, either cholera toxin beta subunit or cholera toxin beta subunit gold conjugate was injected into frequency-matched locations in each area to reveal the projection pattern from the thalamus and cortex. Most retrograde labeling was found at tonotopically appropriate locations within a 1 mm-wide strip in the thalamus and a 2-3 mm-wide expanse of cortex (approximately 85%). However, approximately 13-30% of the neurons originated from frequency-mismatched locations far from their predicted positions in thalamic nuclei and cortical areas, respectively. We propose that these heterotopic projections satisfy at least three criteria that may be necessary to support the magnitude and character of plastic changes in physiological studies. First, they are found in the thalamus, ipsilateral and commissural cortex; since this reorganization could arise from any of these routes and may involve each, such projections ought to occur in them. Second, they originate from nuclei and areas with or without tonotopy; it is likely that plasticity is not exclusively shaped by spectral influences and not limited to cochleotopic regions. Finally, the projections are appropriate in magnitude and sign to plausibly support such rearrangements; given the rapidity of some aspects of plastic changes, they should be mediated by substantial existing connections. Alternative roles for these heterotopic projections are also considered.


PLOS ONE | 2010

Encoding of Temporal Information by Timing, Rate, and Place in Cat Auditory Cortex

Kazuo Imaizumi; Nicholas J. Priebe; Tatyana O. Sharpee; Steven W. Cheung; Christoph E. Schreiner

A central goal in auditory neuroscience is to understand the neural coding of species-specific communication and human speech sounds. Low-rate repetitive sounds are elemental features of communication sounds, and core auditory cortical regions have been implicated in processing these information-bearing elements. Repetitive sounds could be encoded by at least three neural response properties: 1) the event-locked spike-timing precision, 2) the mean firing rate, and 3) the interspike interval (ISI). To determine how well these response aspects capture information about the repetition rate stimulus, we measured local group responses of cortical neurons in cat anterior auditory field (AAF) to click trains and calculated their mutual information based on these different codes. ISIs of the multiunit responses carried substantially higher information about low repetition rates than either spike-timing precision or firing rate. Combining firing rate and ISI codes was synergistic and captured modestly more repetition information. Spatial distribution analyses showed distinct local clustering properties for each encoding scheme for repetition information indicative of a place code. Diversity in local processing emphasis and distribution of different repetition rate codes across AAF may give rise to concurrent feed-forward processing streams that contribute differently to higher-order sound analysis.


Neurophysiology | 2013

Functional Convergence of Thalamic and Intrinsic Projections to Cortical Layers 4 and 6

Charles C. Lee; Kazuo Imaizumi

Ascending sensory information is conveyed from the thalamus to layers 4 and 6 of the sensory cortical areas. Interestingly, receptive field properties of cortical layer-6 neurons differ from those in layer 4. Do such differences reflect distinct inheritance patterns from the thalamus, or are they derived instead from local cortical circuits? To distinguish between these possibilities, we utilized in vitro slice preparations containing the thalamo-cortical pathways of the auditory and somatosensory systems. Responses from neurons in layers 4 and 6 that resided in the same column were recorded using whole-cell patch clamp. Laser-scanning photostimulation via uncaging of glutamate in the thalamus and cortex was used to map the functional topography of thalamo-cortical and intracortical inputs to each layer. In addition, we assessed the functional divergence of thalamo-cortical inputs by optical imaging of flavoprotein autofluorescence. We found that the thalamo-cortical inputs to layers 4 and 6 originated from the same thalamic domain, but the intracortical projections to the same neurons differed dramatically. Our results suggest that the intracortical projections, rather than the thalamic inputs, to each layer contribute more to the differences in their receptive field properties.


Archive | 2005

Challenges to a Neuroanatomical Theory of Forebrain Auditory Plasticity

Jeffery A. Winer; Charles C. Lee; Kazuo Imaizumi; Christoph E. Schreiner

The mature brain performs paradoxical tasks. It encodes sensory experience accurately and with fidelity, and it modifies otherwise stable maps of the ears, eyes, and body to represent learning (Weinberger et al, 1984), forgetting (Bakin and Weinberger, 1990), and manipulation of stimulus parameters and statistics (Zhang et al, 2002). These two functional modes have elicited attention at the synaptic (Metherate and Ashe, 1995) and systems (Wall, 1988) levels of analysis, both of which have dynamic (Calford, 2002) as well as metastable (Schieber, 2001) elements. Reconciling the conflicting requirements of stability and lability in the adult map is a profound challenge for systems neuroscience that has received surprisingly little attention at the neuroanatomical level of discourse. The finding that primary auditory cortex (Al) neurons can reorganize their tonotopic map rapidly and globally in a frequency-specific manner (Kilgard and Merzenich, 1998) suggests that the continuous impact of sensory plasticity on shaping local processing (Weinberg, 1997) may have been underestimated (Kaas, 1997). A key issue for understanding the limits of such systems-level plasticity is to propose, and ultimately to test, a theory of neural substrates that plausibly encode, or that instruct the brain to represent, experience selectively (Recanzone et al, 1993), specifically 109


Brain Sciences | 2016

Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex

Sarah M. Fader; Kazuo Imaizumi; Yuchio Yanagawa; Charles C. Lee

Perineuronal nets (PNNs) are specialized extracellular matrix molecules that are associated with the closing of the critical period, among other functions. In the adult brain, PNNs surround specific types of neurons, however the expression of PNNs in the auditory system of the mouse, particularly at the level of the midbrain and forebrain, has not been fully described. In addition, the association of PNNs with excitatory and inhibitory cell types in these structures remains unknown. Therefore, we sought to investigate the expression of PNNs in the inferior colliculus (IC), thalamic reticular nucleus (TRN) and primary auditory cortex (A1) of the mouse brain by labeling with wisteria floribunda agglutinin (WFA). To aid in the identification of inhibitory neurons in these structures, we employed the vesicular GABA transporter (VGAT)-Venus transgenic mouse strain, which robustly expresses an enhanced yellow-fluorescent protein (Venus) natively in nearly all gamma-amino butyric acid (GABA)-ergic inhibitory neurons, thus enabling a rapid and unambiguous assessment of inhibitory neurons throughout the nervous system. Our results demonstrate that PNNs are expressed throughout the auditory midbrain and forebrain, but vary in their local distribution. PNNs are most dense in the TRN and least dense in A1. Furthermore, PNNs are preferentially associated with inhibitory neurons in A1 and the TRN, but not in the IC of the mouse. These data suggest regionally specific roles for PNNs in auditory information processing.


Frontiers in Neural Circuits | 2014

Frequency transformation in the auditory lemniscal thalamocortical system

Kazuo Imaizumi; Charles C. Lee

The auditory lemniscal thalamocortical (TC) pathway conveys information from the ventral division of the medial geniculate body to the primary auditory cortex (A1). Although their general topographic organization has been well characterized, functional transformations at the lemniscal TC synapse still remain incompletely codified, largely due to the need for integration of functional anatomical results with the variability observed with various animal models and experimental techniques. In this review, we discuss these issues with classical approaches, such as in vivo extracellular recordings and tracer injections to physiologically identified areas in A1, and then compare these studies with modern approaches, such as in vivo two-photon calcium imaging, in vivo whole-cell recordings, optogenetic methods, and in vitro methods using slice preparations. A surprising finding from a comparison of classical and modern approaches is the similar degree of convergence from thalamic neurons to single A1 neurons and clusters of A1 neurons, although, thalamic convergence to single A1 neurons is more restricted from areas within putative thalamic frequency lamina. These comparisons suggest that frequency convergence from thalamic input to A1 is functionally limited. Finally, we consider synaptic organization of TC projections and future directions for research.


Hearing Research | 2011

Spatial organization of repetition rate processing in cat anterior auditory field

Kazuo Imaizumi; Nicholas J. Priebe; Steven W. Cheung; Christoph E. Schreiner

Auditory cortex updates incoming information on a segment by segment basis for human speech and animal communication. Measuring repetition rate transfer functions (RRTFs) captures temporal responses to repetitive sounds. In this study, we used repetitive click trains to describe the spatial distribution of RRTF responses in cat anterior auditory field (AAF) and to discern potential variations in local temporal processing capacity. A majority of RRTF filters are band-pass. Temporal parameters estimated from RRTFs and corrected for characteristic frequency or latency dependencies are non-homogeneously distributed across AAF. Unlike the shallow global gradient observed in spectral receptive field parameters, transitions from loci with high to low temporal parameters are steep. Quantitative spatial analysis suggests non-uniform, circumscribed local organization for temporal pattern processing superimposed on global organization for spectral processing in cat AAF.


Neuroreport | 2015

Nicotinic alteration of functional thalamocortical topography.

Charles C. Lee; Yuchio Yanagawa; Kazuo Imaizumi

The thalamocortical pathways form highly topographic connections from the primary sensory thalamic nuclei to the primary cortical areas. The synaptic properties of these thalamocortical connections are modifiable by activation from various neuromodulators, such as acetylcholine. Cholinergic activation can alter functional properties in both the developing and the mature nervous system. Moreover, environmental factors, such as nicotine, can activate these receptors, although the circuit-level alterations resulting from such nicotinic activation of sensory neural circuits remain largely unexplored. Therefore, we examined alterations to the functional topography of thalamocortical circuits in the developing sensory pathways of the mouse. Photostimulation by uncaging of glutamate was used to map these functional thalamocortical alterations in response to nicotinic receptor activation. As a result, we found that activation of forebrain nicotinic acetylcholine receptors results in an expansion and enhancement of functional thalamocortical topographies as assessed in brain slice preparations using laser-scanning photostimulation by uncaging of glutamate. These physiological changes were correlated with the neuroanatomical expression of nicotinic acetylcholine receptor subtypes (&agr;7 and &bgr;2). These circuit-level alterations may provide a neural substrate underlying the plastic development and reshaping of thalamocortical circuitry in response to nicotinic receptor activation.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Development of spectral and temporal response selectivity in the auditory cortex

Edward F. Chang; Shaowen Bao; Kazuo Imaizumi; Christoph E. Schreiner; Michael M. Merzenich


Cerebral Cortex | 2004

Concurrent Tonotopic Processing Streams in Auditory Cortex

Charles C. Lee; Kazuo Imaizumi; Christoph E. Schreiner; Jeffery A. Winer

Collaboration


Dive into the Kazuo Imaizumi's collaboration.

Top Co-Authors

Avatar

Charles C. Lee

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas J. Priebe

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge