Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazutomi Kusano is active.

Publication


Featured researches published by Kazutomi Kusano.


Molecular Pharmacology | 2006

A Common Regulatory Region Functions Bidirectionally in Transcriptional Activation of the Human CYP1A1 and CYP1A2 Genes

Rika Ueda; Hiromi Iketaki; Kiyoshi Nagata; Shioko Kimura; Frank J. Gonzalez; Kazutomi Kusano; Tsutomu Yoshimura; Yasushi Yamazoe

The human CYP1A1 and CYP1A2 genes on chromosome 15 are orientated head-to-head and are separated by a 23-kilobase (kb) intergenic spacer region. Thus, the possibility exists for sharing common regulatory elements contained in the spacer region responsible for transcriptional activation and regulation of the CYP1A1 and CYP1A2 genes. In the present study, a reporter gene construct containing -22.4 kb of the 5′-flanking region of the CYP1A2 gene was found to support β-naphthoflavone (BNF) and 3-methylchoranthrene (3-MC)-mediated transcriptional activation. The responsive region was also functional in directing activation of the CYP1A1 promoter, indicating that the region works bidirectionally to govern transcriptional activation of both CYP1A1 and CYP1A2. To simultaneously evaluate transcriptional activation of both genes, a dual reporter vector was developed in which the spacer region was inserted between two different reporter genes, firefly luciferase and secreted alkaline phosphatase. Transient transfection of the dual reporter vector in HepG2 cells revealed increases in both reporter activities after exposure of the cells to BNF and 3-MC. Deletion studies of the spacer region indicated that a region from -464 to -1829 of the CYP1A1 gene works bidirectionally to enhance the transcriptional activation of not only CYP1A1 but also CYP1A2. In addition, a negative bidirectional regulatory region was found to exist from -18,989 to -21,992 of the CYP1A1 gene. These data established that induction of human CYP1A1 and CYP1A2 is simultaneously controlled through bidirectional and common regulatory elements.


Drug Metabolism and Disposition | 2013

Substrate-Dependent Inhibition of Organic Anion Transporting Polypeptide 1B1: Comparative Analysis with Prototypical Probe Substrates Estradiol-17β-Glucuronide, Estrone-3-Sulfate, and Sulfobromophthalein

Saki Izumi; Yoshitane Nozaki; Takafumi Komori; Kazuya Maeda; Osamu Takenaka; Kazutomi Kusano; Tsutomu Yoshimura; Hiroyuki Kusuhara; Yuichi Sugiyama

Organic anion transporting polypeptide (OATP) 1B1 plays an important role in the hepatic uptake of many drugs, and the evaluation of OATP1B1-mediated drug-drug interactions (DDIs) is emphasized in the latest DDI (draft) guidance documents from U.S. and E.U. regulatory agencies. It has been suggested that some OATP1B1 inhibitors show a discrepancy in their inhibitory potential, depending on the substrates used in the cell-based assay. In this study, inhibitory effects of 14 compounds on the OATP1B1-mediated uptake of the prototypical substrates [3H]estradiol-17β-glucuronide (E2G), [3H]estrone-3-sulfate (E1S), and [3H]sulfobromophthalein (BSP) were studied in OATP1B1-transfected cells. Inhibitory potencies of tested compounds varied depending on the substrates. Ritonavir, gemfibrozil, and erythromycin caused remarkable substrate-dependent inhibition with up to 117-, 14-, and 13-fold difference in their IC50 values, respectively. Also, the clinically relevant OATP inhibitors rifampin and cyclosporin A exhibited up to 12- and 6-fold variation in their IC50 values, respectively. Regardless of the inhibitors tested, the most potent OATP1B1 inhibition was observed when [3H]E2G was used as a substrate. Mutual inhibition studies of OATP1B1 indicated that E2G and E1S competitively inhibited each other, whereas BSP noncompetitively inhibited E2G uptake. In addition, BSP inhibited E1S in a competitive manner, but E1S caused an atypical kinetics on BSP uptake. This study showed substrate-dependent inhibition of OATP1B1 and demonstrated that E2G was the most sensitive in vitro OATP1B1 probe substrate among three substrates tested. This will give us an insight into the assessment of clinically relevant OATP1B1-mediated DDI in vitro with minimum potential of false-negative prediction.


Journal of Pharmacology and Experimental Therapeutics | 2013

Antipruritic effect of the topical phosphodiesterase 4 inhibitor E6005 ameliorates skin lesions in a mouse atopic dermatitis model.

Naoto Ishii; Manabu Shirato; Hisashi Wakita; Kazuki Miyazaki; Yasutaka Takase; Osamu Asano; Kazutomi Kusano; Eiichi Yamamoto; Chiharu Inoue; Ieharu Hishinuma

Phosphodiesterase (PDE) 4 inhibition is a well-known anti-inflammatory mechanism, but the development of PDE4 inhibitors has been hampered by side effects such as nausea and emesis. Local delivery of a PDE4 inhibitor to the site of inflammation may overcome these issues. The purpose of this study was to assess the therapeutic potential of E6005 (methyl 4-[({3-[6,7-dimethoxy-2-(methylamino)quinazolin-4-yl]phenyl}amino)carbonyl]benzoate), a novel PDE4 inhibitor developed as a topical agent for atopic dermatitis (AD). E6005 potently and selectively inhibited human PDE4 activity with an IC50 of 2.8 nM and suppressed the production of various cytokines from human lymphocytes and monocytes with IC50 values ranging from 0.49 to 3.1 nM. In mice models, the topical application of E6005 produced an immediate antipruritic effect as well as an anti-inflammatory effect with reduced expression of cytokines/adhesion molecules. On the basis of these observed effects, topical E6005 ameliorated the appearance of atopic dermatitis-like skin lesions in two types of AD models, hapten- and mite-elicited models, exhibiting inhibitory effects comparable to that of tacrolimus. The use of 14C-labeled E6005 showed rapid clearance from the blood and low distribution to the brain, contributing to the low emetic potential of this compound. These results suggest that E6005 may be a promising novel therapeutic agent with antipruritic activity for the treatment of AD.


Bioanalysis | 2015

Hematocrit-independent recovery is a key for bioanalysis using volumetric absorptive microsampling devices, Mitra™.

Yuji Mano; Kenji Kita; Kazutomi Kusano

BACKGROUND A novel microsampling device, Mitra(TM), was evaluated for bioanalysis of E6005 and its O-desmethylated metabolite in human whole blood using an UPLC-MS. RESULTS A constant volume of blood samples was absorbed onto the tip of Mitra, the analytes were extracted by various solvents and then detected by UPLC-MS. Recovery of the analytes was high in acetonitrile-water (1:1, v/v) but was dependent on hematocrit (Hct) without sonication process, which led to biased accuracy at low and high Hcts. Inclusion of sonication process in extraction improved recovery at high Hct to yield acceptable accuracy across Hcts. CONCLUSION Optimization of extraction process to achieve high recovery regardless of Hct is critical in accurate bioanalysis via Mitra.


Drug Metabolism and Disposition | 2012

Unique Metabolic Pathway of [14C]Lenvatinib after Oral Administration to Male Cynomolgus Monkey

Kazuko Inoue; Naoki Asai; Hitoshi Mizuo; Katsuyuki Fukuda; Kazutomi Kusano; Tsutomu Yoshimura

Lenvatinib, a potent inhibitor of multiple tyrosine kinases, including vascular endothelial growth factor receptors 2 and 3, generated unique metabolites after oral administration of [14C]lenvatinib (30 mg/kg) to a male cynomolgus monkey. Lenvatinib was found to be transformed to a GSH conjugate, through displacement of an O-aryl moiety, at the quinoline part of the molecule in the liver and kidneys. The GSH conjugate underwent further hydrolysis by γ-glutamyltranspeptidase and dipeptidases, followed by intramolecular rearrangement, to form N-cysteinyl quinoline derivatives, which were dimerized to form disulfide dimers and also formed an N,S-cysteinyl diquinoline derivative. In urine, a thioacetic acid conjugate of the quinoline was also observed as one of the major metabolites of lenvatinib. Lenvatinib is a 4-O-aryl quinoline derivative, and such compounds have been known to undergo conjugation with GSH, accompanied by release of the O-aryl moiety. Because of intramolecular rearrangement in the case of lenvatinib, hydrolysis of the GSH conjugate yielded N-cysteinylglycine and N-cysteine conjugates instead of the corresponding S-conjugates. Because the N-substituted derivatives possess free sulfhydryl groups, dimerization through disulfide bonds and another nucleophilic substitution reaction with lenvatinib resulted in the formation of disulfanyl dimers and an N,S-cysteinyl diquinoline derivative, respectively. Characteristic product ions at m/z 235 and m/z 244, which were associated with thioquinoline and N-ethylquinoline derivatives, respectively, were used to differentiate S- and N-derivatives in this study. On the basis of accurate mass and NMR measurements, a unique metabolic pathway for lenvatinib in monkey and the proposed formation mechanism have been elucidated.


Journal of Pharmaceutical and Biomedical Analysis | 2015

High-performance liquid chromatography–tandem mass spectrometry method for the determination of perampanel, a novel α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist in human plasma

Yuji Mano; Osamu Takenaka; Kazutomi Kusano

Perampanel (Fycompa(®)) is a novel α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist registered for the adjunctive treatment of patients (≥12 years) with refractory partial onset seizures. In order to support clinical trials, as well as therapeutic drug monitoring, a sensitive bioanalytical method for the determination of perampanel concentrations in human plasma was established and validated using liquid chromatography with tandem mass spectrometry. Perampanel and an internal standard were extracted from human plasma (100 μL) by liquid extraction using methyl t-butyl ether, then evaporated and reconstituted. The chromatographic separation was conducted on a C8 column with isocratic elution at a flow rate of 0.2 mL/min. The established method showed linearity in the range 0.25-200 ng/mL with correlation coefficients of >0.99 that could be extended 10-fold as validated by dilution integrity analyses. No significant endogenous peaks were detected in the elution of analytes in blank human plasma and no significant matrix effect was observed. The intra- and inter-batch reproducibility analyses demonstrated accuracy and precision within the acceptance criteria. To check the impact of anti-epileptic drugs on the perampanel assay, accuracy, precision, and specificity were assessed in the presence of 14 anti-epileptic drugs. No anti-epileptic drugs at clinically relevant levels showed a significant impact on the perampanel assay.


Journal of Pharmaceutical and Biomedical Analysis | 2015

A validated LC–MS/MS method of total and unbound lenvatinib quantification in human serum for protein binding studies by equilibrium dialysis

Yuji Mano; Kazutomi Kusano

A sensitive method for the determination of total and unbound lenvatinib (Lenvima™), a novel tyrosine kinase inhibitor, in human serum was developed for protein binding studies using an equilibrium dialysis and liquid chromatography with tandem mass spectrometry. Serum samples (0.8 mL) were dialyzed against phosphate buffered saline (PBS) in dialyzer for 18 h at 37 °C to obtain dialysate and serum for unbound and total lenvatinib, respectively. After extraction by organic solvent, separation was achieved on a Symmetry Shield RP8 column with isocratic elution of 2 mM ammonium acetate (pH 4.0)-acetonitrile (3:2, v/v) at the flow rate of 0.2 mL/min. Detection was performed using API4000 with multiple reaction monitoring mode using positive electrospray ionization. The standard curve ranged from 0.0400 to 16.0 ng/mL and 0.0800 to 400 ng/mL as lenvatinib free base in PBS and serum, respectively. Accuracy and precision in the intra- and inter-batch reproducibility study were within the acceptance criteria. Various stability assessments including bench-top, freeze/thaw, processed samples, and frozen stability confirmed that lenvatinib was stable in serum and PBS. Application to in vivo protein binding studies in clinical studies was successfully performed and results showed that lenvatinib was highly protein bound in serum.


Drug Metabolism and Disposition | 2014

Oxidative Metabolic Pathway of Lenvatinib Mediated by Aldehyde Oxidase

Kazuko Inoue; Hitoshi Mizuo; Shinki Kawaguchi; Katsuyuki Fukuda; Kazutomi Kusano; Tsutomu Yoshimura

Lenvatinib is a multityrosine kinase inhibitor that inhibits vascular endothelial growth factor receptors, and is being developed as an anticancer drug. P450s are involved in one of the elimination pathways of lenvatinib, and mono-oxidized metabolites, such as N-oxide (M3) and desmethylated metabolite (M2), form in rats, dogs, monkeys, and humans. Meanwhile, two other oxidative metabolites are produced only in monkey and human liver S9 fractions, and their structures have been identified using high-resolution mass spectrometry as a quinolinone form of lenvatinib (M3′) and a quinolinone form of desmethylated lenvatinib (M2′). The formation of M3′ from lenvatinib occurred independently of NADPH and was effectively inhibited by typical inhibitors of aldehyde oxidase, indicating the involvement of aldehyde oxidase, but not P450s, in this pathway. M2′ was a dioxidized metabolite arising from a combination of mono-oxidation and desmethylation and could only be produced from M2 in a NADPH-independent manner; M2′ could not be generated from M3 or M3′. These results suggested that M2′ is formed from lenvatinib by a unique two-step pathway through M2. Although both lenvatinib and M2 were substrates for aldehyde oxidase, an enzyme kinetic study indicated that M2 was a much more favorable substrate than lenvatinib. No inhibitory activities of lenvatinib, M2′, or M3′ and no significant inhibitory activities of M2 or M3 on aldehyde oxidase were observed, suggesting a low possibility of drug-drug interactions in combination therapy with substrates of aldehyde oxidase.


Biomedical Chromatography | 2015

HPLC with fluorescence detection assay of perampanel, a novel AMPA receptor antagonist, in human plasma for clinical pharmacokinetic studies.

Yuji Mano; Osamu Takenaka; Kazutomi Kusano

Perampanel (Fycompa®), a novel α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, is registered for the adjunctive treatment of patients (aged ≥12 years) with refractory partial-onset seizures. To support therapeutic drug monitoring, a simple high-performance liquid chromatography (HPLC) assay with fluorescence detection was developed to determine perampanel concentrations in human plasma and validated to support clinical trials. Human plasma samples (1.0 mL) were processed by liquid extraction using diethyl ether, followed by chromatographic separation on a YMC Pack Pro C18 column (150 × 4.6 mm i.d., 5 µm) with isocratic elution of acetonitrile-water-acetic acid-sodium acetate (840:560:3:1.8, v/v/v/w) at a flow rate of 1.0 mL/min. Column eluent was monitored at excitation and emission wavelengths of 290 and 430 nm, respectively. The assay was linear (range 1.0-500 ng/mL) and this could be extended to 25 µg/mL by 50-fold dilution integrity. No endogenous peaks were detected in the elution of analytes in drug-free blank human plasma from six individuals and no interference was observed with co-medications tested. Intra- and inter-batch reproducibility studies demonstrated accuracy and precision within the acceptance criteria of bioanalytical guidelines. Validation data demonstrated that our assay is simple, selective, reproducible and suitable for therapeutic drug monitoring of perampanel.


Drug Metabolism and Disposition | 2013

Species Difference in the Mechanism of Nonlinear Pharmacokinetics of E2074, a Novel Sodium Channel Inhibitor, in Rats, Dogs, and Monkeys

Yoko Nagaya; Osamu Takenaka; Kazutomi Kusano; Tsutomu Yoshimura

New chemical entities often exhibit nonlinear pharmacokinetics (PK) profiles in experimental animals. However, the number of studies that have focused on species differences in nonlinear PK is very limited; thus, the aim of this study was to clarify the mechanism of the nonlinear PK of E2074 (2-[(2R)-2-fluoro-3-{(3r)-[(3-fluorobenzyl)oxy]-8-azabicyclo[3.2.1]oct-8-yl}propyl]-4,5-dimethyl-2,4-dihydro-3H-1,2,4-triazol-3-one), a novel sodium channel inhibitor, in rats, dogs, and monkeys. Nonlinear PK profiles with more than dose-proportional increases of Cmax and area under the plasma concentration curve were observed in all species after oral administration. The Michaelis–Menten constant (Km) values of hepatic microsomal metabolism were 7.23 and 0.41 μM in rats and dogs in vitro, respectively, which were lower than the unbound maximum plasma concentrations after oral administration in vivo, indicating that the nonlinear PK in rats and dogs was attributable to the saturation of hepatic metabolism. However, we do not believe that the saturation of hepatic metabolism was the mechanism of nonlinearity in monkeys because of the high Km value (42.44 μM) observed in liver microsomes. Intestinal metabolism was observed in monkey intestinal microsomes but not in rats and dogs, and the nonlinear PK in monkeys was diminished by inhibition of intestinal metabolism with a concomitant oral dose of ketoconazole. These results suggest that saturation of the intestinal metabolism is the potential mechanism of nonlinearity in monkeys. P-glycoprotein was not involved in the nonlinear PK profiles in any species. In conclusion, the mechanism of the nonlinear PK of E2074 is species dependent, with the saturation of hepatic metabolism in rats and dogs and that of intestinal metabolism in monkeys being the primary cause.

Collaboration


Dive into the Kazutomi Kusano's collaboration.

Researchain Logo
Decentralizing Knowledge