Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuyasu Mori is active.

Publication


Featured researches published by Kazuyasu Mori.


Cell | 1991

Importance of the nef gene for maintenance of high virus loads and for development of AIDS

Harry W. Kestier; Ringler Dj; Kazuyasu Mori; Dennis Panicali; Prabhat K. Sehgal; M. D. Daniel; Ronald C. Desrosiers

When rhesus monkeys were infected with a form of cloned SIVmac239 having a premature stop signal at the 93rd codon of nef, revertants with a coding codon at this position quickly and universally came to predominate in the infected animals. This suggests that there are strong selective forces for open functional forms of nef in vivo. Although deletion of nef sequences had no detectable effect on virus replication in cultured cells, deletion of nef sequences dramatically altered the properties of virus in infected rhesus monkeys. Our results indicate that nef is required for maintaining high virus loads during the course of persistent infection in vivo and for full pathologic potential. Thus, nef should become a target for antiviral drug development. Furthermore, the properties of virus with a deletion in nef suggest a means for making live-attenuated strains of virus for experimental vaccine testing.


Journal of Experimental Medicine | 2004

Cytotoxic T Lymphocyte-based Control of Simian Immunodeficiency Virus Replication in a Preclinical AIDS Vaccine Trial

Tetsuro Matano; Masahiro Kobayashi; Hiroko Igarashi; Akiko Takeda; Hiromi Nakamura; Munehide Kano; Chie Sugimoto; Kazuyasu Mori; Akihiro Iida; Takahiro Hirata; Mamoru Hasegawa; Takae Yuasa; Masaaki Miyazawa; Yumiko Takahashi; Michio Yasunami; Akinori Kimura; David H. O'Connor; David I. Watkins; Yoshiyuki Nagai

Recently, encouraging AIDS vaccine trials in macaques have implicated cytotoxic T lymphocytes (CTLs) in the control of the simian human immunodeficiency virus SHIV89.6P that induces acute CD4+ T cell depletion. However, none of these vaccine regimens have been successful in the containment of replication of the pathogenic simian immunodeficiency viruses (SIVs) that induce chronic disease progression. Indeed, it has remained unclear if vaccine-induced CTL can control SIV replication. Here, we show evidence suggesting that vaccine-induced CTLs control SIVmac239 replication in rhesus macaques. Eight macaques vaccinated with DNA-prime/Gag-expressing Sendai virus vector boost were challenged intravenously with SIVmac239. Five of the vaccinees controlled viral replication and had undetectable plasma viremia after 5 wk of infection. CTLs from all of these five macaques rapidly selected for escape mutations in Gag, indicating that vaccine-induced CTLs successfully contained replication of the challenge virus. Interestingly, analysis of the escape variant selected in three vaccinees that share a major histocompatibility complex class I haplotype revealed that the escape variant virus was at a replicative disadvantage compared with SIVmac239. These findings suggested that the vaccine-induced CTLs had “crippled” the challenge virus. Our results indicate that vaccine induction of highly effective CTLs can result in the containment of replication of a highly pathogenic immunodeficiency virus.


Journal of Virology | 2000

Mechanisms for adaptation of simian immunodeficiency virus to replication in alveolar macrophages.

Kazuyasu Mori; Michael L. Rosenzweig; Ronald C. Desrosiers

ABSTRACT In contrast to the simian immunodeficiency virus SIVmac239, which replicates poorly in rhesus monkey alveolar macrophages, a variant with nine amino acid changes in envelope (SIVmac239/316E) replicates efficiently and to high titer in these same cells. We examined levels of viral DNA, RNA, antigen, and infectious virus to identify the nature of the block to SIVmac239 replication in these cells. Low levels of viral antigen (0.1 to 1.0 ng of p27 per ml) and infectious virus (100 to 1,000 infectious units per ml) were produced in the supernatant 1 to 4 days after SIVmac239 infection, but these levels did not increase subsequently. SIVmac239 DNA was synthesized in these macrophage cultures during the initial 24 h after infection, but the levels did not increase subsequently. Quantitation of the numbers of infectious cells in cultures over time and the results of experiments in which cells were reexposed to SIVmac239 after the initial exposure indicated that only a small proportion of cells were susceptible to SIVmac239 infection in these alveolar macrophage cultures and that the vast majority (>95%) of cells were refractory to SIVmac239 infection. In contrast to the results with SIVmac239, the levels of viral antigen, infectious virus, and viral DNA increased exponentially 2 to 7 days after infection by SIVmac239/316E, reaching levels greater than 100 ng of p27 per ml and 100,000 infectious units per ml. Since SIVmac239/316E has previously been described as a virus capable of infecting cells in a relatively CD4-independent fashion, we examined the levels of CD4 expression on the surface of fresh and cultured alveolar macrophages from rhesus monkeys. The levels of CD4 expression were extremely low, below the limit of detection by flow cytometry, on greater than 99% of the macrophages. CCR5+cells were profoundly depleted only from alveolar macrophage cultures infected with SIVmac239/316E. High concentrations of an antibody to CD4 delayed but did not block replication of SIVmac239/316E. The results suggest that the adaptation of SIVmac316 to efficient replication in alveolar macrophages results from its ability to infect these cells in a CD4-independent fashion or in a CD4-dependent fashion even at extremely low levels of surface CD4 expression. Since resident macrophages in brains and lungs of humans also express little or no CD4, our findings predict the presence of human immunodeficiency virus type 1 that is relatively CD4 independent in the lung and brain compartments of infected people.


Journal of Virology | 2007

Simian immunodeficiency virus (SIV) infection influences the level and function of regulatory T cells in SIV-infected rhesus macaques but not SIV-infected sooty mangabeys.

L. E. Pereira; Francois Villinger; Nattawat Onlamoon; P. Bryan; A. Cardona; K. Pattanapanysat; Kazuyasu Mori; Shoko I. Hagen; L. Picker; Aftab A. Ansari

ABSTRACT Differences in clinical outcome of simian immunodeficiency virus (SIV) infection in disease-resistant African sooty mangabeys (SM) and disease-susceptible Asian rhesus macaques (RM) prompted us to examine the role of regulatory T cells (Tregs) in these two animal models. Results from a cross-sectional study revealed maintenance of the frequency and absolute number of peripheral Tregs in chronically SIV-infected SM while a significant loss occurred in chronically SIV-infected RM compared to uninfected animals. A longitudinal study of experimentally SIV-infected animals revealed a transient increase in the frequency of Tregs from baseline values following acute infection in RM, but no change in the frequency of Tregs occurred in SM during this period. Further examination revealed a strong correlation between plasma viral load (VL) and the level of Tregs in SIV-infected RM but not SM. A correlation was also noted in SIV-infected RM that control VL spontaneously or in response to antiretroviral chemotherapy. In addition, immunofluorescent cell count assays showed that while Treg-depleted peripheral blood mononuclear cells from RM led to a significant enhancement of CD4+ and CD8+ T-cell responses to select pools of SIV peptides, there was no detectable T-cell response to the same pool of SIV peptides in Treg-depleted cells from SIV-infected SM. Our data collectively suggest that while Tregs do appear to play a role in the control of viremia and the magnitude of the SIV-specific immune response in RM, their role in disease resistance in SM remains unclear.


Journal of Virology | 2000

Suppression of Acute Viremia by Short-Term Postexposure Prophylaxis of Simian/Human Immunodeficiency Virus SHIV-RT-Infected Monkeys with a Novel Reverse Transcriptase Inhibitor (GW420867) Allows for Development of Potent Antiviral Immune Responses Resulting in Efficient Containment of Infection

Kazuyasu Mori; Yasuhiro Yasutomi; Shuzo Sawada; Francois Villinger; Kazushige Sugama; Brigitte Rosenwith; Jonathan L. Heeney; Klaus Überla; Shudo Yamazaki; Aftab A. Ansari; Helga Rübsamen-Waigmann

ABSTRACT A nonnucleoside reverse transcriptase (RT) inhibitor, GW420867, was tested for postexposure prophylaxis (PEP) in rhesus macaques experimentally infected with 100 50% tissue culture infective doses of a chimeric simian/human immunodeficiency virus (SHIV) containing the RT gene of HIV-1 (SHIV-RT). Animals were either mock treated, or treated for 4 weeks starting at 8 or 24 h postinfection (p.i.) with GW420867. While such therapy led to undetectable plasma viremia in three of six monkeys, a transient plasma viremia was noted in the other three treated animals at 2 to 4 weeks following cessation of therapy. Following this transient viremia all drug-treated animals showed low or undetectable levels of plasma viremia up to the last sample examined at 90 weeks p.i. Despite low and/or undetectable viremia, virus-specific cytotoxic T lymphocyte and viral Env-specific proliferative responses were seen in the peripheral blood mononuclear cells of both mock- and drug-treated animals as early as 3 weeks p.i. Such virus-specific cellular responses, however, were better maintained in the drug-treated animals than the mock-treated animals. In contrast to the virus-specific cellular response, the magnitude and kinetics of virus specific humoral responses appeared to correlate with the detection of viremia. These data support the view that a short-term PEP with GW420867 permits the generation and maintenance of long-lasting virus-specific cell-mediated immune responses while markedly reducing viral loads to undetectable levels for a prolonged period of time (90 weeks) and leads to long-term disease protection. This model provides a unique means to define mechanisms and correlates of disease protection.


Journal of Virology | 2001

Quintuple Deglycosylation Mutant of Simian Immunodeficiency Virus SIVmac239 in Rhesus Macaques: Robust Primary Replication, Tightly Contained Chronic Infection, and Elicitation of Potent Immunity against the Parental Wild-Type Strain

Kazuyasu Mori; Yasuhiro Yasutomi; Shinji Ohgimoto; Tadashi Nakasone; Shiki Takamura; Tatsuo Shioda; Yoshiyuki Nagai

ABSTRACT We previously generated a mutant of simian immunodeficiency virus (SIV) lacking 5 of a total of 22 N-glycans in its external envelope protein gp120 with no impairment in viral replication capability and infectivity in tissue culture cells. Here, we infected rhesus macaques with this mutant and found that it also replicated robustly in the acute phase but was tightly, though not completely, contained in the chronic phase. Thus, a critical requirement for the N-glycans for the full extent of chronic infection was demonstrated. No evidence indicating reversion to a wild type was obtained during the observation period of more than 40 weeks. Monkeys infected with the mutant were found to tolerate a challenge infection with wild-type SIV very well. Analyses of host responses following challenge revealed no neutralizing antibodies against the challenge virus but strong secondary responses of cytotoxic T lymphocytes against multiple antigens, including Gag-Pol, Nef, and Env. Thus, the quintuple deglycosylation mutant appeared to represent a novel class of SIV live attenuated vaccine.


Journal of Virology | 2003

Evidence for Antibody-Mediated Enhancement of Simian Immunodeficiency Virus (SIV) Gag Antigen Processing and Cross Presentation in SIV-Infected Rhesus Macaques

Francois Villinger; Ann E. Mayne; Pavel Bostik; Kazuyasu Mori; Peter E. Jensen; Rafi Ahmed; Aftab A. Ansari

ABSTRACT By using the dominant simian immunodeficiency virus (SIV) Gag Mamu-A01 restricted major histocompatibility complex (MHC) class I epitope p11CM, we demonstrate antibody-mediated enhanced MHC class I cross presentation of SIV Gag. In vitro restimulation of peripheral blood mononuclear cells from SIV-infected rhesus macaques with recombinant full-length SIV Gag p55 plus p55 affinity-purified immunoglobulin G (p55 Gag/p55-IgG) led to the generation of markedly higher frequencies of p11CM specific precursor cytotoxic T lymphocytes (p-CTLs) compared with restimulation with (i) SIV Gag p55 alone or (ii) optimal concentrations of the p11CM peptide alone. These results, along with the finding that CD4 depletion abrogated the enhancement, suggest a prominent role for CD4+ T cells. Testing for p-CTLs against other Mamu-A01-restricted SIV Gag epitopes suggested that this mechanism favored recognition of the dominant p11CM peptide, potentially further skewing of the CTL response. The p-CTL enhancing effect was also decreased or abrogated by pepsin digestion of the p55-specific IgG or by the addition of monoclonal antibodies to Fc receptor (FcR) II/III, suggesting that the effect was dependent on FcR-mediated uptake of the immune-complexed antigen. Finally, incubation of antigen-presenting cells with SIV Gag p55 immune complexes in the presence of lactacystin or of bafilomycin indicated that the mechanism of antibody-mediated enhancement of cross presentation required both the proteasomal and the endosomal pathways. These data demonstrate for the first time the cross presentation of antigens via immune complexes in lentiviral infection and indicate a heretofore-unrecognized role for antibodies in modulating the magnitude and potentially also the breadth of MHC class I-restricted antigen processing and presentation and CTL responses.


Immunology | 2008

Soluble PD-1 rescues the proliferative response of simian immunodeficiency virus-specific CD4 and CD8 T cells during chronic infection

Nattawat Onlamoon; Kenneth Rogers; Ann E. Mayne; Kovit Pattanapanyasat; Kazuyasu Mori; Francois Villinger; Aftab A. Ansari

Phenotypic and functional studies of the programmed death‐1 (PD‐1) molecule on CD4+ and CD8+ T cells were performed on peripheral blood mononuclear cells from uninfected and simian immunodeficiency virus (SIV)‐infected rhesus macaques. These data demonstrated a rapid upregulation of PD‐1 expression on tetramer‐positive CD8+ T cells from MamuA.01+ SIV‐infected macaques upon infection. Upregulation of PD‐1 on total CD8+ T cells was not detectable. In contrast, CD4+ T‐cell PD‐1 expression was markedly higher in total CD4+ T cells during chronic, but not acute, infection and there was a correlation between the level of PD‐1 expression on naive and central memory CD4+ T cells and the levels of viral loads. Such association was emphasized further by a marked decrease of PD‐1 expression on tetramer‐positive CD8 T cells as well as on CD4+ T cells on longitudinal samples collected before and after the initiation of antiretroviral therapy and downregulation of viral replication in vivo. Cloning of PD‐1 and its two ligands from several non‐human primate species demonstrated > 95% conservation for PD‐1 and PD‐L2 and only about 91% homology for PD‐L1. Functional studies using soluble recombinant PD‐1 protein or PD‐1–immunoglobulin G fusion proteins induced marked increases in the SIV‐specific proliferative responses of both CD4+ and CD8+ T cells from rhesus macaques. The results of these studies serve as a foundation for future in vivo trials of the use of rMamu‐PD‐1 to potentially enhance and/or restore antiviral immune responses in vivo.


Immunogenetics | 2010

Diversity of MHC class I genes in Burmese-origin rhesus macaques

Taeko Naruse; Zhiyong Chen; Risa Yanagida; Tomoko Yamashita; Yusuke Saito; Kazuyasu Mori; Hirofumi Akari; Yasuhiro Yasutomi; Masaaki Miyazawa; Tetsuro Matano; Akinori Kimura

Rhesus macaques (Macaca mulatta) are widely used in developing a strategy for vaccination against human immunodeficiency virus by using simian immunodeficiency virus infection as a model system. Because the genome diversity of major histocompatibility complex (MHC) is well known to control the immune responsiveness to foreign antigens, MHC loci in Indian- and Chinese-origin macaques used in the experiments have been characterized, and it was revealed that the diversity of MHC in macaques was larger than the human MHC. To further characterize the diversity of Mamu-A and Mamu-B loci, we investigated a total of 73 different sequences of Mamu-A, 83 sequences of Mamu-B, and 15 sequences of Mamu-I cDNAs isolated from Burmese-origin macaques. It was found that there were one to five expressing genes in each locus. Among the Mamu-A, Mamu-B, and Mamu-I sequences, 44 (60.2%), 45 (54.2%), and 8 (53.3%), respectively, were novel, and most of the other known alleles were identical to those reported from Chinese- or Indian-origin macaques, demonstrating a genetic mixture between the geographically distinct populations of present day China and India. In addition, it was found that a Mamu haplotype contained at least two highly transcribed Mamu-A genes, because multiple Mamu-A1 cDNAs were obtained from one haplotype. These findings further revealed the diversity and complexity of MHC locus in the rhesus macaques.


Journal of Virology | 2005

Influence of Glycosylation on the Efficacy of an Env-Based Vaccine against Simian Immunodeficiency Virus SIVmac239 in a Macaque AIDS Model

Kazuyasu Mori; Chie Sugimoto; Shinji Ohgimoto; Emi E. Nakayama; Tatsuo Shioda; Shigeru Kusagawa; Yutaka Takebe; Munehide Kano; Tetsuro Matano; Takae Yuasa; Daisuke Kitaguchi; Masaaki Miyazawa; Yumiko Takahashi; Michio Yasunami; Akinori Kimura; Naoki Yamamoto; Yasuo Suzuki; Yoshiyuki Nagai

ABSTRACT The envelope glycoprotein (Env) of human immunodeficiency viruses (HIVs) and simian immunodeficiency viruses (SIVs) is heavily glycosylated, and this feature has been speculated to be a reason for the insufficient immune control of these viruses by their hosts. In a macaque AIDS model, we demonstrated that quintuple deglycosylation in Env altered a pathogenic virus, SIVmac239, into a novel attenuated mutant virus (Δ5G). In Δ5G-infected animals, strong protective immunity against SIVmac239 was elicited. These HIV and SIV studies suggested that an understanding of the role of glycosylation is critical in defining not only the virological properties but also the immunogenicity of Env, suggesting that glycosylation in Env could be modified for the development of effective vaccines. To examine the effect of deglycosylation, we constructed prime-boost vaccines consisting of Env from SIVmac239 and Δ5G and compared their immunogenicities and vaccine efficacies by challenge infection with SIVmac239. Vaccination-induced immune responses differed between the two vaccine groups. Both Env-specific cellular and humoral responses were higher in wild-type (wt)-Env-immunized animals than in Δ5G Env-immunized animals. Following the challenge, viral loads in SIVmac239 Env (wt-Env)-immunized animals were significantly lower than in vector controls, with controlled viral replication in the chronic phase. Unexpectedly, viral loads in Δ5G Env-immunized animals were indistinguishable from those in vector controls. This study demonstrated that the prime-boost Env vaccine was effective against homologous SIVmac239 challenge. Changes in glycosylation affected both cell-mediated and humoral immune responses and vaccine efficacy.

Collaboration


Dive into the Kazuyasu Mori's collaboration.

Top Co-Authors

Avatar

Francois Villinger

University of Louisiana at Lafayette

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chie Sugimoto

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yoshiyuki Nagai

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tetsuro Matano

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fumiko Ono

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge