Keaton Nahan
University of Cincinnati
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Keaton Nahan.
Acta Biomaterialia | 2017
Daoli Zhao; Tingting Wang; Keaton Nahan; Xuefei Guo; Zhanping Zhang; Zhongyun Dong; Shuna Chen; Da-Tren Chou; Daeho Hong; Prashant N. Kumta; William R. Heineman
The effect of widely different corrosion rates of Mg alloys on four parameters of interest for in vivo characterization was evaluated: (1) the effectiveness of transdermal H2 measurements with an electrochemical sensor for noninvasively monitoring biodegradation compared to the standard techniques of in vivo X-ray imaging and weight loss measurement of explanted samples, (2) the chemical compositions of the corrosion layers of the explanted samples by XPS, (3) the effect on animal organs by histology, and (4) the accumulation of corrosion by-products in multiple organs by ICP-MS. The in vivo biodegradation of three magnesium alloys chosen for their widely varying corrosion rates - ZJ41 (fast), WKX41 (intermediate) and AZ31 (slow) - were evaluated in a subcutaneous implant mouse model. Measuring H2 with an electrochemical H2 sensor is a simple and effective method to monitor the biodegradation process in vivo by sensing H2 transdermally above magnesium alloys implanted subcutaneously in mice. The correlation of H2 levels and biodegradation rate measured by weight loss shows that this non-invasive method is fast, reliable and accurate. Analysis of the insoluble biodegradation products on the explanted alloys by XPS showed all of them to consist primarily of Mg(OH)2, MgO, MgCO3 and Mg3(PO4)2 with ZJ41 also having ZnO. The accumulation of magnesium and zinc were measured in 9 different organs by ICP-MS. Histological and ICP-MS studies reveal that there is no significant accumulation of magnesium in these organs for all three alloys; however, zinc accumulation in intestine, kidney and lung for the faster biodegrading alloy ZJ41 was observed. Although zinc accumulates in these three organs, no toxicity response was observed in the histological study. ICP-MS also shows higher levels of magnesium and zinc in the skull than in the other organs. STATEMENT OF SIGNIFICANCE Biodegradable devices based on magnesium and its alloys are promising because they gradually dissolve and thereby avoid the need for subsequent removal by surgery if complications arise. In vivo biodegradation rate is one of the crucial parameters for the development of these alloys. Promising alloys are first evaluated in vivo by being implanted subcutaneously in mice for 1month. Here, we evaluated several magnesium alloys with widely varying corrosion rates in vivo using multiple characterization techniques. Since the alloys biodegrade by reacting with water forming H2 gas, we used a recently demonstrated, simple, fast and noninvasive method to monitor the biodegradation process by just pressing the tip of a H2 sensor against the skin above the implant. The analysis of 9 organs (intestine, kidney, spleen, lung, heart, liver, skin, brain and skull) for accumulation of Mg and Zn revealed no significant accumulation of magnesium in these organs. Zinc accumulation in intestine, kidney and lung was observed for the faster corroding implant ZJ41. The surfaces of explanted alloys were analyzed to determine the composition of the insoluble biodegradation products. The results suggest that these tested alloys are potential candidates for biodegradable implant applications.
Analytical Chemistry | 2016
Cory A. Rusinek; Adam Bange; Mercedes Warren; Wenjing Kang; Keaton Nahan; Ian Papautsky; William R. Heineman
Though an essential metal in the body, manganese (Mn) has a number of health implications when found in excess that are magnified by chronic exposure. These health complications include neurotoxicity, memory loss, infertility in males, and development of a neurologic psychiatric disorder, manganism. Thus, trace detection in environmental samples is increasingly important. Few electrode materials are able to reach the negative reductive potential of Mn required for anodic stripping voltammetry (ASV), so cathodic stripping voltammetry (CSV) has been shown to be a viable alternative. We demonstrate Mn CSV using an indium tin oxide (ITO) working electrode both bare and coated with a sulfonated charge selective polymer film, polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene-sulfonate (SSEBS). ITO itself proved to be an excellent electrode material for Mn CSV, achieving a calculated detection limit of 5 nM (0.3 ppb) with a deposition time of 3 min. Coating the ITO with the SSEBS polymer was found to increase the sensitivity and lower the detection limit to 1 nM (0.06 ppb). This polymer modified electrode offers excellent selectivity for Mn as no interferences were observed from other metal ions tested (Zn(2+), Cd(2+), Pb(2+), In(3+), Sb(3+), Al(3+), Ba(2+), Co(2+), Cu(2+), Ni(3+), Bi(3+), and Sn(2+)) except Fe(2+), which was found to interfere with the analytical signal for Mn(2+) at a ratio 20:1 (Fe(2+)/Mn(2+)). The applicability of this procedure to the analysis of tap, river, and pond water samples was demonstrated. This simple, sensitive analytical method using ITO and SSEBS-ITO could be applied to a number of electroactive transition metals detectable by CSV.
Journal of Trace Elements in Medicine and Biology | 2017
Keaton Nahan; Kyle Walsh; Opeolu Adeoye; Julio Landero-Figueroa
Stroke, a major cause of disability and mortality, affects someone in the United States every 40s. Stroke biomarkers, including those that could be used as a blood test for diagnosis of stroke, have been particularly elusive. We performed a double blind study to identify human plasma biomarkers for the diagnosis of stroke, including acute ischemic stroke (AIS) and intracerebral hemorrhage (ICH). We utilized a three-track approach based on the total metal profile, the metal cofactor levels among metalloproteins, and the identification of stroke-related metalloproteins. The study included 14 case-control pairs of AIS and 23 case-control pairs of ICH. Controls were matched to cases based on gender, ethnicity, and age (±5 years). AIS cases were statistically higher from their respective controls for protein bound co-factors Se and Cd, while unique correlations of metal cofactor concentrations among metalloproteins were identified between Pb-W, Sr-W, Pb-V, and Cu-V. ICH cases were statistically higher from their respective controls for Se and Co cofactors, whereas Cd and Pb were statistically lower. Unique correlations between metal cofactors for ICH cases were identified between Pb-W, Sr-W, Pb-V, and Cu-V. Stroke-related metalloproteins were identified, including calpain-15, protein-activated inward rectifier potassium channel 1, tau-tubulin kinase 1, and voltage-dependent L-type calcium channel subunit beta-3. Linear discriminant analysis (LDA) was able to classify patients between stroke cases or controls with 93% accuracy as well as classify patients with one of the four stroke groups with 85% accuracy. Additionally, this study found utmost importance in vanadium (V) and tungsten (W) correlations for both bound and total metal concentrations, suggestive of binding to transferrin or inhibition of oxidoreductases. Future work in stroke patients will seek to quantify varying selenoproteins, including selenoprotein P and glutathione peroxidase and identified zinc finger tissue leakage proteins, and further explore the role of trace metal fluctuations with transferrin.
Journal of the American Society for Mass Spectrometry | 2017
Keaton Nahan; Noe T. Alvarez; Vesselin Shanov; Anne P. Vonderheide
AbstractMass spectrometry continues to tackle many complicated tasks, and ongoing research seeks to simplify its instrumentation as well as sampling. The desorption electrospray ionization (DESI) source was the first ambient ionization source to function without extensive gas requirements and chromatography. Electrospray techniques generally have low efficiency for ionization of nonpolar analytes and some researchers have resorted to methods such as direct analysis in real time (DART) or desorption atmospheric pressure chemical ionization (DAPCI) for their analysis. In this work, a carbon nanotube fiber ionization (nanoCFI) source was developed and was found to be capable of solid phase microextraction (SPME) of nonpolar analytes as well as ionization and sampling similar to that of direct probe atmospheric pressure chemical ionization (DP-APCI). Conductivity and adsorption were maintained by utilizing a corona pin functionalized with a multi-walled carbon nanotube (MWCNT) thread. Quantitative work with the nanoCFI source with a designed corona discharge pin insert demonstrated linearity up to 0.97 (R2) of three target PAHs with phenanthrene internal standard. Graphical Abstractᅟ
Analytical Letters | 2016
Dawone Holloway; Pablo Campo; Keaton Nahan; Anna M. Donnell; Julio Landero; Joseph A. Caruso; Anne P. Vonderheide
ABSTRACT Hair-relaxing kits are used by many women, a high percentage of whom are African American, to transform curly hair to straight hair. Almost all varieties consist of extremely caustic solutions that demonstrate pH values in the range of 10–14. Because of the harshness of this alkaline reagent, petroleum jelly (petrolatum) is often times incorporated into the composition to protect the scalp. Petrolatum, a highly organic byproduct of crude oil, is widely used in cosmetics and topical pharmaceuticals as well. This article reports the elemental composition of various brands of hair-relaxing creams. Several sample preparation techniques were investigated for the digestion of this very organic, viscous matrix. Inductively coupled plasma-mass spectrometry was used for its multi-element capability and high sensitivity. Internal standard calibration was used in the quantitation of a select group of metals, transition metals, and metalloids (Ti, V, Cr, Co, Ni, Ga, Ge, As, Se, Rb, Sr, Zr, Nb, Mo, Ag, Cd, Cs, Ba, W, Re, Tl, Pb, U) and the established method was applied to various brands of hair-relaxing kits. Major elemental constituents were Ti, Sr, and Ba, and these were found at low µg g−1 in all brands considered.
Journal of Materials Chemistry B | 2014
Bo Hu; Xian Cao; Keaton Nahan; Joseph A. Caruso; Hong Tang; Peng Zhang
Chemical Communications | 2015
Tevhide Ozkaya Ahmadov; Padmanabh Joshi; Jinnan Zhang; Keaton Nahan; Joseph A. Caruso; Peng Zhang
Journal of Chemical Education | 2016
Anna M. Donnell; Keaton Nahan; Dawone Holloway; Anne P. Vonderheide
Electroanalysis | 2017
Cory A. Rusinek; Wenjing Kang; Keaton Nahan; Megan Hawkins; Cooper Quartermaine; Angela Stastny; Adam Bange; Ian Papautsky; William R. Heineman
Microchemical Journal | 2018
Ernesto R. Verni; Keaton Nahan; Alicia V. Lapiere; Luis D. Martinez; Raúl A. Gil; Julio Landero-Figueroa