Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kebin Zhang is active.

Publication


Featured researches published by Kebin Zhang.


European Journal of Pharmacology | 2009

Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats

Jiyin Zhou; Shiwen Zhou; Jianlin Tang; Kebin Zhang; Lixia Guang; Yongping Huang; Ying Xu; Yi Ying; Le Zhang; Dandan Li

Oxidative stress in diabetes coexists with a reduction in the antioxidant status, which can further increase the deleterious effects of free radicals. Berberine is one of the main alkaloids of Rhizoma coptidis which has been used to treat diabetes for more than 1400 years in China. The present study was designed to evaluate the protective effects of berberine against beta cell damage and antioxidant of pancreas in diabetic rats. Diabetic rats with hyperlipidemia were induced by intraperitoneally injection 35 mg/kg streptozotocin and a high-carbohydrate/high-fat diet. Rats were divided into 7 groups at the end of week 16: untreated control, untreated diabetic, 75, 150, 300 mg/kg berberine-treated diabetic, 100 mg/kg fenofibrate-treated, and 4 mg/kg rosiglitazone-treated. After 16 weeks treatment, serum insulin level, insulin expression in pancreas, and malonaldehyde content, superoxide dismutase activity in pancreatic homogenate were assayed. Pancreas was examined by hematoxylin/eosin staining and transmission electron microscope. Pancreas to body weight ratio, insulin level, insulin sensitivity index, malonaldehyde content and superoxide dismutase activity were altered in diabetic rats, and were near control levels treated with 150, 300 mg/kg berberine. Mitochondrial vacuolization and swelling, dilatation of the endoplasmic reticulum were observed in beta cells of diabetic rats. The pancreatic islet area atrophied and secretory granules of beta cells decreased in diabetic rats. Slight pathological changes existed in beta cells of 150, 300 mg/kg berberine-treated diabetic pancreas. These findings suggest that berberine has protective effect for diabetes through increasing insulin expression, beta cell regeneration, antioxidant enzyme activity and decreasing lipid peroxidation.


Endocrinology | 2012

Hepatic Suppression of Foxo1 and Foxo3 Causes Hypoglycemia and Hyperlipidemia in Mice

Kebin Zhang; Ling Li; Yajuan Qi; Xiaoping Zhu; Boyi Gan; Ronald A. DePinho; Travis Averitt; Shaodong Guo

Dysregulation of blood glucose and triglycerides are the major characteristics of type 2 diabetes mellitus. We sought to identify the mechanisms regulating blood glucose and lipid homeostasis. Cell-based studies established that the Foxo forkhead transcription factors Forkhead box O (Foxo)-1, Foxo3, and Foxo4 are inactivated by insulin via a phosphatidylinositol 3-kinase/Akt-dependent pathway, but the role of Foxo transcription factors in the liver in regulating nutrient metabolism is incompletely understood. In this study, we used the Cre/LoxP genetic approach to delete the Foxo1, Foxo3, and Foxo4 genes individually or a combination of two or all in the liver of lean or db/db mice and assessed the role of Foxo inactivation in regulating glucose and lipid homeostasis in vivo. In the lean mice or db/db mice, hepatic deletion of Foxo1, rather than Foxo3 or Foxo4, caused a modest reduction in blood glucose concentrations and barely affected lipid homeostasis. Combined deletion of Foxo1 and Foxo3 decreased blood glucose levels, elevated serum triglyceride and cholesterol concentrations, and increased hepatic lipid secretion and caused hepatosteatosis. Analysis of the liver transcripts established a prominent role of Foxo1 in regulating gene expression of gluconeogenic enzymes and Foxo3 in the expression of lipogenic enzymes. Our findings indicate that Foxo1 and Foxo3 inactivation serves as a potential mechanism by which insulin reduces hepatic glucose production and increases hepatic lipid synthesis and secretion in healthy and diabetic states.


Journal of Diabetes and Its Complications | 2014

Down-regulation of miR-34a alleviates mesangial proliferation in vitro and glomerular hypertrophy in early diabetic nephropathy mice by targeting GAS1.

Le Zhang; Siyi He; Shaodong Guo; Wei Xie; Rong Xin; Hua Yu; Fan Yang; Jing Qiu; Di Zhang; Shiwen Zhou; Kebin Zhang

AIMS Diabetic nephropathy (DN) is a major diabetic complication characterized by mesangial proliferation and glomerular hypertrophy. MicroRNAs might play an important role in these pathological processes. The aim of this study is to examine the possible association of miR-34a as one of the microRNAs with DN and underlying mechanisms in vitro and in vivo. METHODS According to previous results of microarray which compared the different microRNAs between diabetic and normal control mice, miR-34a was chosen and its expression was detected by qRT-PCR. Cell viability was then assessed using Cell Counting Kit-8 (CCK8) and 5-ethynyl-20-deoxyuridine (EDU) incorporation. Antagomir was injected in db/db mice to down regulate miR-34a. Average diameter of glomeruli was analyzed by periodic acid-Schiff (PAS) stain of kidney. Luciferase gene report assay was then performed to identify the target gene of miR-34a. Additional immunoblotting and immunohistochemical analyses were implemented to verify the expression level of growth arrest-specific 1 (GAS1). RESULTS MiR-34a expression level was increased under high glucose condition in vitro and in vivo. Down-regulation of miR-34a inhibits mice mesangial cells (MMCs) proliferation in vitro and alleviates glomerular hypertrophy in vivo. GAS1 was proved to be the target of miR-34a through luciferase report. Moreover, up-regulation of GAS1 expression was observed in the presence of miR-34a antagomir as compared with miR-34a antagomir-NC in high-glucose-treated MMCs and db/db mice, respectively. CONCLUSIONS MiR-34a regulated mesangial proliferation and glomerular hypertrophy by directly inhibiting GAS1 in early DN.


Circulation-heart Failure | 2015

Activation of Foxo1 by Insulin Resistance Promotes Cardiac Dysfunction and β-Myosin Heavy Chain Gene Expression

Yajuan Qi; Qinglei Zhu; Kebin Zhang; Candice M. Thomas; Yuxin Wu; Rajesh Kumar; Kenneth M. Baker; Zihui Xu; Shouwen Chen; Shaodong Guo

Background—Heart failure is a leading cause of morbidity and mortality in the USA and is closely associated with diabetes mellitus. The molecular link between diabetes mellitus and heart failure is incompletely understood. We recently demonstrated that insulin receptor substrates 1, 2 (IRS1, 2) are key components of insulin signaling and loss of IRS1 and IRS2 mediates insulin resistance, resulting in metabolic dysregulation and heart failure, which is associated with downstream Akt inactivation and in turn activation of the forkhead transcription factor Foxo1. Methods and Results—To determine the role of Foxo1 in control of heart failure in insulin resistance and diabetes mellitus, we generated mice lacking Foxo1 gene specifically in the heart. Mice lacking both IRS1 and IRS2 in adult hearts exhibited severe heart failure and a remarkable increase in the &bgr;-isoform of myosin heavy chain (&bgr;-MHC) gene expression, whereas deletion of cardiac Foxo1 gene largely prevented the heart failure and resulted in a decrease in &bgr;-MHC expression. The effect of Foxo1 deficiency on rescuing cardiac dysfunction was also observed in db/db mice and high-fat diet mice. Using cultures of primary ventricular cardiomyocytes, we found that Foxo1 interacts with the promoter region of &bgr;-MHC and stimulates gene expression, mediating an effect of insulin that suppresses &bgr;-MHC expression. Conclusions—Our study suggests that Foxo1 has important roles in promoting diabetic cardiomyopathy and controls &bgr;-MHC expression in the development of cardiac dysfunction. Targeting Foxo1 and its regulation will provide novel strategies in preventing metabolic and myocardial dysfunction and influencing MHC plasticity in diabetes mellitus.


Canadian Journal of Microbiology | 2014

Elastase LasB of Pseudomonas aeruginosa promotes biofilm formation partly through rhamnolipid-mediated regulation

Hua Yu; Xiaomei He; Wei Xie; Junzhi Xiong; Halei Sheng; Shaodong Guo; Chunji Huang; Di Zhang; Kebin Zhang

Elastase LasB, an important extracellular virulence factor, is shown to play an important role in the pathogenicity of Pseudomonas aeruginosa during host infection. However, the role of LasB in the life cycle of P. aeruginosa is not completely understood. This report focuses on the impact of LasB on biofilm formation of P. aeruginosa PAO1. Here, we reported that the lasB deletion mutant (ΔlasB) displayed significantly decreased bacterial attachment, microcolony formation, and extracellular matrix linkage in biofilm associated with decreased biosynthesis of rhamnolipids compared with PAO1 and lasB complementary strain (ΔlasB(+)). Nevertheless, the ΔlasB developed restored biofilm formation with supplementation of exogenous rhamnolipids. Further gene expression analysis revealed that the mutant of lasB could result in the downregulation of rhamnolipid synthesis at the transcriptional level. Taken together, these results indicated that LasB could promote biofilm formation partly through the rhamnolipid-mediated regulation.


Hypertension | 2014

Novel Mechanism of Blood Pressure Regulation By Forkhead Box Class O1–Mediated Transcriptional Control of Hepatic Angiotensinogen

Yajuan Qi; Kebin Zhang; Yuxin Wu; Zihui Xu; Qian Chen Yong; Rajesh Kumar; Kenneth M. Baker; Qinglei Zhu; Shouwen Chen; Shaodong Guo

The renin–angiotensin system is a major determinant of blood pressure regulation. It consists of a cascade of enzymatic reactions involving 3 components: angiotensinogen, renin, and angiotensin-converting enzyme, which generate angiotensin II as a biologically active product. Angiotensinogen is largely produced in the liver, acting as a major determinant of the circulating renin–angiotensin system, which exerts acute hemodynamic effects on blood pressure regulation. How the expression of angiotensinogen is regulated is not completely understood. Here, we hypothesize that angiotensinogen is regulated by forkhead transcription factor forkhead box class O1 (Foxo1), an insulin-suppressed transcription factor, and thereby controls blood pressure in mice. We generated liver-specific Foxo1 knockout mice, which exhibited a reduction in plasma angiotensinogen and angiotensin II levels and a significant decrease in blood pressure. Using hepatocyte cultures, we demonstrated that overexpression of Foxo1 increased angiotensinogen expression, whereas hepatocytes lacking Foxo1 demonstrated a reduction of angiotensinogen gene expression and partially impaired insulin inhibition on angiotensinogen gene expression. Furthermore, mouse angiotensinogen prompter analysis demonstrated that the angiotensinogen promoter region contains a functional Foxo1-binding site, which is responsible for both Foxo1 stimulation and insulin suppression on the promoter activity. Together, these data demonstrate that Foxo1 regulates hepatic angiotensinogen gene expression and controls plasma angiotensinogen and angiotensin II levels, modulating blood pressure control in mice.


Journal of Molecular and Cellular Cardiology | 2015

Activation of AMPK restricts coxsackievirus B3 replication by inhibiting lipid accumulation

Wei Xie; Lei Wang; Qian Dai; Hua Yu; Xiaomei He; Junzhi Xiong; Halei Sheng; Di Zhang; Rong Xin; Yajuan Qi; Fuquan Hu; Shaodong Guo; Kebin Zhang

Coxsackievirus B3 (CVB3) is the major pathogen of human viral myocarditis. CVB3 has been found to manipulate and modify the cellular lipid metabolism for viral replication. The cellular AMP-activated protein kinase (AMPK) is a key regulator of multiple metabolic pathways, including lipid metabolism. Here we explore the potential roles AMPK plays in CVB3 infection. We found that AMPK is activated by the viral replication during CVB3 infection in Hela cells and primary myocardial cells. RNA interference mediated inhibition of AMPK could increase the CVB3 replication in cells, indicating that AMPK contributed to restricting the viral replication. Next, we showed that CVB3 replication could be inhibited by several different pharmacological AMPK activators including metformin, A769662 and AICAR. And the constitutively active AMPK mutant (CA-AMPK) could also inhibit the CVB3 replication. Furthermore, we found that CVB3 infection increased the cellular lipid levels and showed that the AMPK agonist AICAR both restricted CVB3 replication and reduced lipid accumulation through inhibiting the lipid synthesis associated gene expression. We further found that CVB3 infection would also induce AMPK activated in vivo. The AMPK agonist metformin, which has been widely used in diabetes therapy, could decrease the viral replication and further protect the mice from myocardial histological and functional changes in CVB3 induced myocarditis, and improve the survival rate of infected mice. Lastly, it was demonstrated that the AICAR-mediated restriction of viral replication could be rescued partially by exogenous palmitate, the first product of fatty acid biosynthesis, demonstrating that AMPK activation restricted CVB3 infection through its inhibition of lipid synthesis. Taken together, these data in the present study suggest a model in which AMPK is activated by CVB3 infection and restricts viral replication by inhibiting the cellular lipid accumulation, and inform a potential novel therapeutic strategy for CVB3-associated diseases.


Scientific Reports | 2016

Ndk, a novel host-responsive regulator, negatively regulates bacterial virulence through quorum sensing in Pseudomonas aeruginosa.

Hua Yu; Junzhi Xiong; Rong Zhang; Xiaomei Hu; Jing Qiu; Di Zhang; Xiaohui Xu; Rong Xin; Xiaomei He; Wei Xie; Halei Sheng; Qian Chen; Le Zhang; Xiancai Rao; Kebin Zhang

Pathogenic bacteria could adjust gene expression to enable their survival in the distinct host environment. However, the mechanism by which bacteria adapt to the host environment is not well described. In this study, we demonstrated that nucleoside diphosphate kinase (Ndk) of Pseudomonas aeruginosa is critical for adjusting the bacterial virulence determinants during infection. Ndk expression was down-regulated in the pulmonary alveoli of a mouse model of acute pneumonia. Knockout of ndk up-regulated transcription factor ExsA-mediated T3S regulon expression and decreased exoproduct-related gene expression through the inhibition of the quorum sensing hierarchy. Moreover, in vitro and in vivo studies demonstrated that the ndk mutant exhibits enhanced cytotoxicity and host pathogenicity by increasing T3SS proteins. Taken together, our data reveal that ndk is a critical novel host-responsive gene required for coordinating P. aeruginosa virulence upon acute infection.


Journal of Biotechnology | 2013

Expression of coxsackievirus and adenovirus receptor (CAR)-Fc fusion protein in Pichia pastoris and characterization of its anti-coxsackievirus activity.

Kebin Zhang; Hua Yu; Wei Xie; Zihui Xu; Shiwen Zhou; Chunji Huang; Halei Sheng; Xiaomei He; Junzhi Xiong; Guisheng Qian

Coxsackievirus and adenovirus receptors (CARs) are the common cellular receptors which mediate coxsackievirus or adenovirus infection. Receptor trap therapy, which uses soluble viral receptors to block the attachment and internalization of virus, has been developed for the inhibition of virus infection. In this study, we have constructed a pPIC3.5K/CAR-Fc expression plasmid for the economical and scale-up production of CAR-Fc fusion protein in Pichia pastoris. The coding sequence of the fusion protein was optimized according to the host codon usage bias. The amount of the CAR-Fc protein to total cell protein was up to 10% by 1% methanol induction for 96h and the purity was up to 96% after protein purification. Next, the virus pull-down assay demonstrated the binding activity of the CAR-Fc to coxsackievirus. The analyses of MTT assay, immunofluorescence staining and quantitative real-time PCR after virus neutralization assay revealed that CAR-Fc could significantly block coxsackievirus B3 infection in vitro. In coxsackievirus B3 infected mouse models, CAR-Fc treatment reduced mortality, myocardial edema, viral loads and inflammation, suggesting the significant virus blocking effect in vivo. Our results indicated that the P. pastoris expression system could be used to produce large quantities of bioactive CAR-Fc for further clinical purpose.


Scientific Reports | 2018

Characterization of lasR-deficient clinical isolates of Pseudomonas aeruginosa.

Yao Wang; Leiqiong Gao; Xiancai Rao; Jing Wang; Hua Yu; Junru Jiang; Wei Zhou; Jin Wang; Yonghong Xiao; Mengwen Li; Yan Zhang; Kebin Zhang; Li Shen; Ziyu Hua

Pseudomonas aeruginosa is a prevalent opportunistic pathogen that causes fatal infections in immunocompromised individuals. Quorum sensing (QS) is a cell-to-cell communication process that controls virulence gene expression and biofilm formation in P. aeruginosa. Here, the QS systems and the relevant virulence traits in clinical P. aeruginosa isolates were characterized. Eleven out of the ninety-four P. aeruginosa isolates exhibited a biofilm-deficient phenotype. Two biofilm-deficient isolates, one from blood and the one from pleural effusion, appeared to carry a same mutation in lasR. These two isolates differed in the ability to produce QS-regulated virulence factors, but contained the same functionally deficient LasR with the truncated C-terminal domains and belonged to the same multilocus sequence type (ST227). Chromosomal lasR complementation in these lasR mutants verified that lasR inactivation was the sole cause of las deficiency. LasR was not absolutely required for rhl signal in these lasR mutants, suggesting the presence of lasR-independent QS systems. We provided evidence that the virulence gene expression are not regulated in the same manner in these isolates. These results support the hypothesis that conventional QS hierarchy can be smashed by naturally occurring lasR mutation in clinical P. aeruginosa isolates and that complex QS hierarchy may play a role in maintaining infection of this opportunistic pathogen.

Collaboration


Dive into the Kebin Zhang's collaboration.

Top Co-Authors

Avatar

Hua Yu

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Xie

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Di Zhang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Halei Sheng

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Junzhi Xiong

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Le Zhang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaomei He

Third Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge