Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kee Woei Ng is active.

Publication


Featured researches published by Kee Woei Ng.


Journal of Biomedical Materials Research | 2001

Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling.

Dietmar W. Hutmacher; Thorsten Schantz; Iwan Zein; Kee Woei Ng; Swee Hin Teoh; Kim Cheng Tan

A number of different processing techniques have been developed to design and fabricate three-dimensional (3D) scaffolds for tissue-engineering applications. The imperfection of the current techniques has encouraged the use of a rapid prototyping technology known as fused deposition modeling (FDM). Our results show that FDM allows the design and fabrication of highly reproducible bioresorbable 3D scaffolds with a fully interconnected pore network. The mechanical properties and in vitro biocompatibility of polycaprolactone scaffolds with a porosity of 61 +/- 1% and two matrix architectures were studied. The honeycomb-like pores had a size falling within the range of 360 x 430 x 620 microm. The scaffolds with a 0/60/120 degrees lay-down pattern had a compressive stiffness and a 1% offset yield strength in air of 41.9 +/- 3.5 and 3.1 +/- 0.1 MPa, respectively, and a compressive stiffness and a 1% offset yield strength in simulated physiological conditions (a saline solution at 37 degrees C) of 29.4 +/- 4.0 and 2.3 +/- 0.2 MPa, respectively. In comparison, the scaffolds with a 0/72/144/36/108 degrees lay-down pattern had a compressive stiffness and a 1% offset yield strength in air of 20.2 +/- 1.7 and 2.4 +/- 0.1 MPa, respectively, and a compressive stiffness and a 1% offset yield strength in simulated physiological conditions (a saline solution at 37 degrees C) of 21.5 +/- 2.9 and 2.0 +/- 0.2 MPa, respectively. Statistical analysis confirmed that the five-angle scaffolds had significantly lower stiffness and 1% offset yield strengths under compression loading than those with a three-angle pattern under both testing conditions (p < or = 0.05). The obtained stress-strain curves for both scaffold architectures demonstrate the typical behavior of a honeycomb structure undergoing deformation. In vitro studies were conducted with primary human fibroblasts and periosteal cells. Light, environmental scanning electron, and confocal laser microscopy as well as immunohistochemistry showed cell proliferation and extracellular matrix production on the polycaprolactone surface in the 1st culturing week. Over a period of 3-4 weeks in a culture, the fully interconnected scaffold architecture was completely 3D-filled by cellular tissue. Our cell culture study shows that fibroblasts and osteoblast-like cells can proliferate, differentiate, and produce a cellular tissue in an entirely interconnected 3D polycaprolactone matrix.


Tissue Engineering | 2001

Evaluation of Ultra-Thin Poly(ε-Caprolactone) Films for Tissue-Engineered Skin

Kee Woei Ng; Dietmar W. Hutmacher; Jan-Thorsten Schantz; Chin Seng Ng; Heng-Phon Too; Thiam Chye Lim; Toan Thang Phan; Swee Hin Teoh

Various natural and synthetic polymeric materials have been used as scaffold matrices for tissue-engineered skin. However, the commercially available skin replacement products pose problems of poor mechanical properties and immunological rejection. We have thus developed a film of 5 microm thickness, via biaxial stretching of poly(epsilon-caprolactone) (PCL), as a potential matrix for living skin replacements. The aim of this study was to evaluate the feasibility of using biaxially stretched PCL films as matrices for culturing human dermal fibroblasts. For this purpose, we cultured human dermal fibroblasts for 7 days on the films. Glass cover slips and polyurethane (PU) sheets were used as controls. The data from phase contrast light, confocal laser, and scanning electron microscopy suggested that biaxially stretched PCL films support the attachment and proliferation of human dermal fibroblasts. Thymidine-labeling results showed quantitatively that cell proliferation on the PCL films was superior to that on the PU samples. These results indicated that biaxially stretched PCL films supported the growth of human dermal fibroblasts and might have potential to be applied in tissue engineering a dermal equivalent or skin graft.


Biomaterials | 2011

The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles.

Kee Woei Ng; Stella P.K. Khoo; Boon Chin Heng; Magdiel Inggrid Setyawati; Eng Chok Tan; Xinxin Zhao; Sijing Xiong; Wanru Fang; David Tai Leong; Joachim Say Chye Loo

In this paper, we explored how ZnO nanoparticles cross-interact with a critical tumor suppressive pathway centered around p53, which is one of the most important known tumor suppressors that protects cells from developing cancer phenotypes through its control over major pathways like apoptosis, senescence and cell cycle progression. We showed that the p53 pathway was activated in BJ cells (skin fibroblasts) upon ZnO nanoparticles treatment with a concomitant decrease in cell numbers. This suggests that cellular responses like apoptosis in the presence of ZnO nanoparticles require p53 as the molecular master switch towards programmed cell death. This also suggests that in cells without robust p53, protective response can be tipped towards carcinogenesis when stimulated by DNA damage inducing agents like ZnO nanoparticles. We observed this precarious tendency in the same BJ cells with p53 knocked down using endogeneous expressing shRNA. These p53 knocked down BJ cells became more resistant to ZnO nanoparticles induced cell death and increased cell progression. Collectively, our results suggest that cellular response towards specific nanoparticle induced cell toxicity and carcinogenesis is not only dependent on specific nanoparticle properties but also (perhaps more importantly) the endogenous genetic, transcriptomic and proteomic landscape of the target cells.


Experimental Cell Research | 2010

Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage.

Chor Yong Tay; Haiyang Yu; Mintu Pal; Wen Shing Leong; Nguan Soon Tan; Kee Woei Ng; David Tai Leong; Lay Poh Tan

Stem cell response can be influenced by a multitude of chemical, topological and mechanical physiochemical cues. While extensive studies have been focused on the use of soluble factors to direct stem cell differentiation, there are growing evidences illustrating the potential to modulate stem cell differentiation via precise engineering of cell shape. Fibronectin were printed on poly(lactic-co-glycolic acid) (PLGA) thin film forming spatially defined geometries as a means to control the morphology of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs that were cultured on unpatterned substrata adhered and flattened extensively (approximately 10,000 microm(2)) while cells grown on 20 microm micropatterend wide adhesive strips were highly elongated with much smaller area coverage of approximately 2000 microm(2). Gene expression analysis revealed up-regulation of several hallmark markers associated to neurogenesis and myogenesis for cells that were highly elongated while osteogenic markers were specifically down-regulated or remained at its nominal level. Even though there is clearly upregulated levels of both neuronal and myogenic lineages but at the functionally relevant level of protein expression, the myogenic lineage is dominant within the time scale studied as determined by the exclusive expression of cardiac myosin heavy chain for the micropatterned cells. Enforced cell shape distortion resulting in large scale rearrangement of cytoskeletal network and altered nucleus shape has been proposed as a physical impetus by which mechanical deformation is translated into biochemical response. These results demonstrated for the first time that cellular shape modulation in the absence of any induction factors may be a viable strategy to coax lineage-specific differentiation of stem cells.


Food and Chemical Toxicology | 2010

Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress.

Boon Chin Heng; Xinxin Zhao; Sijing Xiong; Kee Woei Ng; Freddy Yin Chiang Boey; Joachim Say Chye Loo

Although several studies reported that cytotoxic effects of various nanoparticles are partially due to induction of oxidative stress, it is unclear how oxidative state of the cell per se could influence its sensitivity to cytotoxic nanoparticles. This is of clinical significance because certain pathological conditions such as inflammation is associated with elevated oxidative stress and this may alter sensitivity of cells and tissues to cytotoxic nanoparticles. Hence, this study investigated how initial exposure of BEAS-2B human bronchial epithelial cells to oxidative stress influences subsequent response to cytotoxic challenge with zinc oxide (ZnO) nanoparticles (approximately 10nm). Oxidative stress was induced by exposing BEAS-2B cells to 5 and 10 microM of H(2)O(2) for 45 min in PBS (with Ca(2+)). Subsequently, the H(2)O(2) solutions were washed off and the cells were exposed to varying concentrations (5-25 microg/ml) of ZnO nanoparticles in culture media for 24h, followed by cell viability assessment with the WST-8 assay. The results demonstrated that initial transient exposure of cells to oxidative stress accentuated cytotoxicity of ZnO nanoparticles. In the negative control unexposed to H(2)O(2), >99% of cells remained viable up to a ZnO nanoparticle concentration of 10 microg/ml, but displayed a steep decrease in viability above 10 microg/ml ZnO. By contrast, cells that were initially exposed to 5 and 10 microM of H(2)O(2), displayed a sharp drop in viability even at concentrations below 10 microg/ml ZnO. At 10 microg/ml ZnO, cells initially exposed to 10 microM H(2)O(2) displayed a viability of 40.6+/-2.0%, which is significantly lower than the corresponding values of 72.8+/-2.0% and 99.9+/-1.1% obtained for initial exposure to 5 microM H(2)O(2) and the negative control, respectively. Hence, initial exposure of BEAS-2B cells to oxidative stress sensitized their subsequent response to cytotoxic challenge with ZnO nanoparticles.


Chemistry: A European Journal | 2013

Integrated Hollow Mesoporous Silica Nanoparticles for Target Drug/siRNA Co‐Delivery

Xing Ma; Yun Zhao; Kee Woei Ng; Yanli Zhao

A hollow mesoporous silica nanoparticle (HMSNP) based drug/siRNA co-delivery system was designed and fabricated, aiming at overcoming multidrug resistance (MDR) in cancer cells for targeted cancer therapy. The as-prepared HMSNPs have perpendicular nanochannels connecting to the internal hollow cores, thereby facilitating drug loading and release. The extra volume of the hollow core enhances the drug loading capacity by two folds as compared with conventional mesoporous silica nanoparticles (MSNPs). Folic acid conjugated polyethyleneimine (PEI-FA) was coated on the HMSNP surfaces under neutral conditions through electrostatic interactions between the partially charged amino groups of PEI-FA and the phosphate groups on the HMSNP surfaces, blocking the mesopores and preventing the loaded drugs from leakage. Folic acid acts as the targeting ligand that enables the co-delivery system to selectively bind with and enter into the target cancer cells. PEI-FA-coated HMSNPs show enhanced siRNA binding capability on account of electrostatic interactions between the amino groups of PEI-FA and siRNA, as compared with that of MSNPs. The electrostatic interactions provide the feasibility of pH-controlled release. In vitro pH-responsive drug/siRNA co-delivery experiments were conducted on HeLa cell lines with high folic acid receptor expression and MCF-7 cell lines with low folic acid receptor expression for comparison, showing effective target delivery to the HeLa cells through folic acid receptor meditated cellular endocytosis. The pH-responsive intracellular drug/siRNA release greatly minimizes the prerelease and possible side effects of the delivery system. By simultaneously delivering both doxorubicin (Dox) and siRNA against the Bcl-2 protein into the HeLa cells, the expression of the anti-apoptotic protein Bcl-2 was successfully suppressed, leading to an enhanced therapeutic efficacy. Thus, the present multifunctional nanoparticles show promising potentials for controlled and targeted drug and gene co-delivery in cancer treatment.


Advanced Healthcare Materials | 2016

Photocrosslinkable gelatin hydrogel for epidermal tissue engineering

Xin Zhao; Qi Lang; Lara Yildirimer; Zhi Yuan (William) Lin; Wenguo Cui; Nasim Annabi; Kee Woei Ng; Mehmet R. Dokmeci; Amir M. Ghaemmaghami; Ali Khademhosseini

Natural hydrogels are promising scaffolds to engineer epidermis. Currently, natural hydrogels used to support epidermal regeneration are mainly collagen- or gelatin-based, which mimic the natural dermal extracellular matrix but often suffer from insufficient and uncontrollable mechanical and degradation properties. In this study, a photocrosslinkable gelatin (i.e., gelatin methacrylamide (GelMA)) with tunable mechanical, degradation, and biological properties is used to engineer the epidermis for skin tissue engineering applications. The results reveal that the mechanical and degradation properties of the developed hydrogels can be readily modified by varying the hydrogel concentration, with elastic and compressive moduli tuned from a few kPa to a few hundred kPa, and the degradation times varied from a few days to several months. Additionally, hydrogels of all concentrations displayed excellent cell viability (>90%) with increasing cell adhesion and proliferation corresponding to increases in hydrogel concentrations. Furthermore, the hydrogels are found to support keratinocyte growth, differentiation, and stratification into a reconstructed multilayered epidermis with adequate barrier functions. The robust and tunable properties of GelMA hydrogels suggest that the keratinocyte laden hydrogels can be used as epidermal substitutes, wound dressings, or substrates to construct various in vitro skin models.


Cell Transplantation | 2002

Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology.

Jan Thorsten Schantz; Dietmar W. Hutmacher; Harvey Chim; Kee Woei Ng; Thiam Chye Lim; Swee Hin Teoh

Due to their osteogenic germination potential, periosteum-derived osteoprogenitor cells are a potential source for tissue engineering a bone graft that could be used to regenerate skeletal defects. In this study we evaluated if ectopic bone formation could be induced by a construct made of human periosteal cells and a novel scaffold architecture whose mechanical properties are in the range of cancellous bone. Biopsies from human calvarial periosteum were harvested and cells were isolated from the inner cambial layer. Fifty thousand periosteal cells were seeded into the scaffolds measuring 6 × 6 × 2 mm. The cell–scaffold constructs were cultured for a period of 3 weeks prior to implantation into balb C nude mice. Mice were sacrificed and implants were analyzed 6 and 17 weeks postoperatively. Immunohistochemical analysis confirmed the osteoblastic phenotype of the seeded cells. Formation of focal adhesions and stress fibers could be observed in both scaffold architectures. Three-dimensional cell proliferation was observed after 2 weeks of culturing with centripetal growth pattern inside the pore network. The deposition of calcified extracellular matrix was observed after 3 weeks of culturing. In vivo, endochondral bone formation with osteoid production was detectable via von Kossa and Osteocalcin staining after 6 and 17 weeks. Histology and SEM revealed that the entire scaffold/bone grafts were penetrated by a vascular network. This study showed the potential of bone tissue engineering by using human periosteal cells in combination with a novel scaffold technology.


Biomaterials | 2003

Elastic cartilage engineering using novel scaffold architectures in combination with a biomimetic cell carrier.

Dietmar W. Hutmacher; Kee Woei Ng; Christian Kaps; Michael Sittinger; Svea Kläring

Tissue engineering of an elastic cartilage graft that meets the criterion for both structural and functional integration into host tissue, as well as allowing for a clinically tolerable immune response, is a challenging endeavour. Conventional scaffold technologies have limitations in their ability to design and fabricate complex-shaped matrix architectures of structural and mechanical equivalence to elastic cartilage found in the body. We attempted to investigate the potential of conventionally isolated and passaged chondrocytes (2D environment) when seeded and cultured in combination with a biomimetic hydrogel in a mechanically stable and biomimetic composite matrix to form elastic cartilage within ectopic implantation sites. In vitro cultured scaffold/hydrogel/chondrocytes constructs showed islets of cartilage and mineralized tissue formation within the cell-seeded specimens in both pig and rabbit models. Specimens with no cells seeded showed only vascularized fibrous tissue ingrowth. These studies demonstrated the potential of such scaffold/hydrogel/cell constructs to support chondrogenesis in vivo. However, it also showed that even mechanically stable scaffolds do not allow regeneration of a large mass of structural and functional cartilage within a matrix architecture seeded with 2D passaged chondrocytes in combination with a cell biomimetic carrier. Hence, future experiments will be designed to evaluate an initial 3D culture of chondrocytes, effect on cell phenotype and their subsequent culture within biomimetic 3D scaffold/cell constructs.


Small | 2013

Exposure to Titanium Dioxide Nanoparticles Induces Autophagy in Primary Human Keratinocytes

Yun Zhao; J. Howe; Zhang Yu; David Tai Leong; Justin Jang Hann Chu; Joachim Say Chye Loo; Kee Woei Ng

Understanding the mechanisms of cell-nanomaterial interactions is vital in harnessing the potential of using nanomaterials in biomedical applications. By immuno-labeling of LC3 and TEM analysis, it is found that titanium dioxide nanoparticles are internalized by human keratinocytes and induce autophagy. Autophagy appears to play a cytoprotective role in response to toxicity influence exerted by the nanoparticles.

Collaboration


Dive into the Kee Woei Ng's collaboration.

Top Co-Authors

Avatar

Dietmar W. Hutmacher

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Xinxin Zhao

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

David Tai Leong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Joachim Say Chye Loo

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Say Chye Joachim Loo

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Sijing Xiong

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Freddy Yin Chiang Boey

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Lay Poh Tan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Swee Hin Teoh

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge