Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keenan Amundsen is active.

Publication


Featured researches published by Keenan Amundsen.


Weed Technology | 2017

Confirmation and Control of HPPD-Inhibiting Herbicide–Resistant Waterhemp (Amaranthus tuberculatus) in Nebraska

Maxwel C. Oliveira; Amit J. Jhala; Todd A. Gaines; Suat Irmak; Keenan Amundsen; Jon Scott; Stevan Z. Knezevic

Field and greenhouse experiments were conducted in Nebraska to (1) confirm the 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting resistant-waterhemp biotype (HPPD-RW) by quantifying the resistance levels in dose-response studies, and (2) to evaluate efficacy of PRE-only, POST-only, and PRE followed by POST herbicide programs for control of HPPD-RW in corn. Greenhouse dose-response studies confirmed that the suspected waterhemp biotype in Nebraska has evolved resistance to HPPD-inhibiting herbicides with a 2- to 18-fold resistance depending upon the type of HPPD-inhibiting herbicide being sprayed. Under field conditions, at 56 d after treatment, ≥90% control of the HPPD-RW was achieved with PRE-applied mesotrione/atrazine/S-metolachlor+acetochlor, pyroxasulfone (180 and 270 g ai ha−1), pyroxasulfone/fluthiacet-methyl/atrazine, and pyroxasulfone+saflufenacil+atrazine. Among POST-only herbicide programs, glyphosate, a premix of mesotrione/atrazine tank-mixed with diflufenzopyr/dicamba, or metribuzin, or glufosinate provided ≥92% HPPD-RW control. Herbicide combinations of different effective sites of action in mixtures provided ≥86% HPPD-RW control in PRE followed by POST herbicide programs. It is concluded that the suspected waterhemp biotype is resistant to HPPD-inhibiting herbicides and alternative herbicide programs are available for effective control in corn. The occurrence of HPPD-RW in Nebraska is significant because it limits the effectiveness of HPPD-inhibiting herbicides. Nomenclature Acetochlor, atrazine, glyphosate, clopyralid, dicamba, diflufenzopyr, dimethenamid-P, flumetsulam, fluthiacet-methyl, glufosinate, isoxaflutole, mesotrione, metribuzin, pyroxasulfone, S-metolachlor, saflufenacil, rimsulfuron, tembotrione, thiencarbazone-methyl, topramezone, waterhemp, Amaranthus tuberculatus (Moq.) Sauer, corn, Zea mays L. Se realizaron experimentos de campo y de invernadero en Nebraska para (1) confirmar un biotipo de Amaranthus tuberculatus resistente a inhibidores de 4-hydroxyphenylpyruvate dioxygenase (HPPD) (HPPD-RW) cuantificando el nivel de resistencia con estudios de respuesta a dosis, y (2) evaluar la eficacia de programas de herbicidas para el control de HPPD-RW en maíz con sólo herbicidas PRE, sólo POST, y herbicidas PRE seguidos por POST. Los estudios de respuesta a dosis en invernadero confirmaron que el biotipo de A. tuberculatus en Nebraska ha evolucionado resistencia a herbicidas inhibidores de HPPD con 2 a 18 veces mayor resistencia dependiendo del tipo de herbicida inhibidor de HPPD que se aplicó. Bajo condiciones de campo, a 56 d después del tratamiento, se alcanzó ≥90% de control de HPPD RW con aplicaciones PRE de mesotrione/atrazine/S-metolachlor + acetochlor, pyroxasulfone (180 y 270 g ai ha−1), pyroxasulfone/fluthiacet-methyl/atrazine, y pyroxasulfone + saflufenacil + atrazine. Entre los programas de herbicidas con sólo POST, glyphosate, una premezcla de mesotrione/atrazine mezclados en tanque con diflufenzopyr/dicamba, o metribuzin, o glufosinate brindaron ≥92% control de HPPD-RW. Combinaciones de herbicidas efectivos con diferentes sitios de acción en mezclas brindaron ≥86% de control de HPPD-RW en programas de herbicidas PRE seguidos por POST. Se concluyó que el biotipo de A. tuberculatus es resistente a herbicidas inhibidores de HPPD y que hay programas de herbicidas alternativos disponibles para su control efectivo en maíz. La ocurrencia de HPPD-RW en Nebraska es significativa porque limita la efectividad de herbicidas inhibidores de HPPD.


Journal of Economic Entomology | 2013

Expression Profiling of Four Defense-Related Buffalograss Transcripts in Response to Chinch Bug (Hemiptera: Blissidae) Feeding

Crystal Ramm; Aaron J. Saathoff; Teresa Donze; Tiffany Heng-Moss; Frederick P. Baxendale; Paul Twigg; Lisa M. Baird; Keenan Amundsen

ABSTRACT Oxidative enzymes are one of many key players in plant tolerance responses and defense signaling pathways. This study evaluated gene expression of four buffalograss transcripts (two peroxidases, a catalase, and a GRAS (gibberellic acid insensitive [GAI], repressor of GAI, and scarecrow) and total peroxidase activity in response to western chinch bug (Blissus occiduus Barber) feeding in susceptible and resistant buffalograsses (Buchloë dactyloides (Nuttall) Engelmann). Basal levels of all four transcripts were consistently higher in the resistant buffalograss when compared with the susceptible genotype, which suggests important physiological differences exist between the two buffalograsses. The four defense-related transcripts also showed differential expression between infested and control plants for both the resistant and susceptible buffalograsses. Differences in total peroxidase activity were also detected between control and infested plants, and basal peroxidase activity was higher in the resistant genotype. Overall, this study indicates that elevated basal levels of specific peroxidases, catalases, and GRAS may be an effective buffalograss defense strategy against chinch bug feeding and other similar biotic stresses.


BMC Genomics | 2013

Transcriptome analysis of two buffalograss cultivars

Michael Wachholtz; Tiffany Heng-Moss; Paul Twigg; Lisa M. Baird; Guoqing Lu; Keenan Amundsen

BackgroundBuffalograss [Buchloë dactyloides (Nutt.) Engel. syn. Bouteloua dactyloides (Nutt.) Columbus] is a United States native turfgrass species that requires less irrigation, fungicides and pesticides compared to more commonly used turfgrass species. In areas where water is limited, interest in this grass species for lawns is increasing. While several buffalograss cultivars have been developed through buffalograss breeding, the timeframe for new cultivar development is long and is limited by a lack of useful genetic resources. Two high throughput next-generation sequencing techniques were used to increase the genomic resources available for buffalograss.ResultsTotal RNA was extracted and purified from leaf samples of two buffalograss cultivars. ‘378’ and ‘Prestige’ cDNA libraries were subjected to high throughput sequencing on the Illumina GA and Roche 454 Titanium FLX sequencing platforms. The 454 platform (3 samples) produced 1,300,885 reads and the Illumina platform (12 samples) generated approximately 332 million reads. The multiple k-mer technique for de novo assembly using Velvet and Oases was applied. A total of 121,288 contigs were assembled that were similar to previously reported Ensembl commelinid sequences. Original Illumina reads were also mapped to the high quality assembly to estimate expression levels of buffalograss transcripts. There were a total of 325 differentially expressed genes between the two buffalograss cultivars. A glycosyl transferase, serine threonine kinase, and nb-arc domain containing transcripts were among those differentially expressed between the two cultivars. These genes have been previously implicated in defense response pathways and may in part explain some of the performance differences between ‘Prestige’ and ‘378’.ConclusionsTo date, this is the first high throughput sequencing experiment conducted on buffalograss. In total, 121,288 high quality transcripts were assembled, significantly expanding the limited genetic resources available for buffalograss genetic studies. Additionally, 325 differentially expressed sequences were identified which may contribute to performance or morphological differences between ‘Prestige’ and ‘378’ buffalograss cultivars.


New Phytologist | 2014

Transcriptomic and physiological characterization of the fefe mutant of melon (Cucumis melo) reveals new aspects of iron–copper crosstalk

Brian M. Waters; Samuel A. McInturf; Keenan Amundsen

Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. In previous work, Fe deficiency interacted with Cu-regulated genes and stimulated Cu accumulation. The C940-fe (fefe) Fe-uptake mutant of melon (Cucumis melo) was characterized, and the fefe mutant was used to test whether Cu deficiency could stimulate Fe uptake. Wild-type and fefe mutant transcriptomes were determined by RNA-seq under Fe and Cu deficiency. FeFe-regulated genes included core Fe uptake, metal homeostasis, and transcription factor genes. Numerous genes were regulated by both Fe and Cu. The fefe mutant was rescued by high Fe or by Cu deficiency, which stimulated ferric-chelate reductase activity, FRO2 expression, and Fe accumulation. Accumulation of Fe in Cu-deficient plants was independent of the normal Fe-uptake system. One of the four FRO genes in the melon and cucumber (Cucumis sativus) genomes was Fe-regulated, and one was Cu-regulated. Simultaneous Fe and Cu deficiency synergistically up-regulated Fe-uptake gene expression. Overlap in Fe and Cu deficiency transcriptomes highlights the importance of Fe-Cu crosstalk in metal homeostasis. The fefe gene is not orthologous to FIT, and thus identification of this gene will provide clues to help understand regulation of Fe uptake in plants.


Mycologia | 2014

Porocercospora seminalis gen. et comb. nov.,the causal organism of buffalograss false smut

Bimal S. Amaradasa; Hugo Madrid; Johannes Z. Groenewald; Pedro W. Crous; Keenan Amundsen

False smut caused by Cercospora seminalis is an important disease of buffalograss (Buchloë dactyloides) affecting seed production. The pathogen prevents normal caryopsis development and causes considerable yield loss and reduced seed germination. The current taxonomic placement of the false-smut causal pathogen in the genus Cercospora is incorrect based on its morphological characteristics and DNA phylogeny. In the present study the phylogenetic position of C. seminalis is clarified based on DNA sequence analysis of three loci namely the internal transcribed spacer (ITS) region, partial nuclear ribosomal large subunit (LSU) and partial sequences of the RNA polymerase II second largest subunit (RPB2). A collection of C. seminalis isolates was made from buffalograss sites near Lincoln, Nebraska. DNA sequence data indicated that Cercospora seminalis is phylogenetically close to but distinct from species of Bipolaris and Curvularia (Pleosporaceae, Pleosporales). Cercospora seminalis morphologically had unique characteristics, namely densely aggregated and repeatedly branched conidiophores arising from a brown stroma, monotretic conidiogenous cells with inconspicuous loci, and scolecosporous conidia with distosepta, and thickened, darkened hila. Porocercospora is introduced as a new genus to accommodate the buffalograss false-smut pathogen.


Journal of Economic Entomology | 2015

Transcriptional Profiling of Resistant and Susceptible Buffalograsses in Response to Blissus occiduus (Hemiptera: Blissidae) Feeding

Crystal Ramm; Michael Wachholtz; Keenan Amundsen; Teresa Donze; Tiffany Heng-Moss; Paul Twigg; Nathan A. Palmer; Gautam Sarath; Frederick P. Baxendale

ABSTRACT Understanding plant resistance mechanisms at a molecular level would provide valuable insights into the biological pathways impacted by insect feeding, and help explain specific plant tolerance mechanisms. As a first step in this process, we conducted next-generation sequencing using RNA extracted from chinch bug-tolerant and -susceptible buffalograss genotypes at 7 and 14 d after chinch bug feeding. Sequence descriptions and gene ontology terms were assigned to 1,701 differentially expressed genes. Defense-related transcripts were differentially expressed within the chinch bug-tolerant buffalograss, Prestige, and susceptible buffalograss, 378. Interestingly, four peroxidase transcripts had higher basal expression in tolerant control plants compared with susceptible control plants. Defense-related transcripts, including two peroxidase genes, two catalase genes, several cytochrome P450 transcripts, a glutathione s-transferase, and a WRKY gene were upregulated within the Prestige transcriptome in response to chinch bug feeding. The majority of observed transcripts with oxidoreductase activity, including nine peroxidase genes and a catalase gene, were downregulated in 378 in response to initial chinch bug feeding. The observed difference in transcript expression between these two buffalograss genotypes provides insight into the mechanism(s) of resistance, specifically buffalograss tolerance to chinch bug feeding.


Mycologia | 2014

Development of SCAR markers and UP-PCR cross-hybridization method for specific detection of four major subgroups of Rhizoctonia from infected turfgrasses

Bimal S. Amaradasa; Brandon J. Horvath; Keenan Amundsen

A rapid identification assay for Waitea circinata (anamorph: Rhizoctonia spp.) varieties zeae and circinata causing patch diseases on turfgrasses was developed based on the universally primed PCR (UP-PCR) products cross-blot hybridization. Tester isolates belonging to the two varieties of W. circinata were amplified with a single UP primer L21, which generated multiple DNA fragments for each variety. Probes were prepared with UP-PCR products of each tester isolate by labeling with digoxigenin. Fieldcollected W. circinata isolates and representative isolates of different R. solani anastomosis groups (AG) and AG subgroups were amplified with L21, immobilized on nylon membrane and cross hybridized with the two probes. Isolates within a W. circinata variety cross-hybridized strongly, while non-homologous isolates did not cross-hybridize or did so weakly. Closely related W. circinata varieties zeae and circinata were clearly distinguished with this assay. Sequence-characterized amplified region (SCAR) markers also were developed from UP-PCR products to identify isolates of Thanatephorus cucumeris (anamorph: R. solani) AG 1-IB and AG 2-2IIIB. These two AGs are commonly isolated from diseased, cool-season turfgrasses. The specific SCAR markers that were developed could differentiate isolates of AG 1-IB or AG 2-2IIIB groups. These SCAR markers did not amplify a product from genomic DNA of nontarget isolates of Rhizoctonia. The specificities and sensitivities of the SCAR primers were tested on total DNA extracted from several field-grown, cool-season turf species having severe brown-patch symptoms. First, the leaf samples from diseased turf species were tested for the anastomosis groups of the causal pathogen, and thereafter the total DNA was amplified with the specific primers. The specific primers were sensitive and unique enough to produce a band from total DNA of diseased turfgrasses infected with either AG 1-IB or AG 2-2IIIB.


Frontiers in Plant Science | 2016

Transcriptome Profiling of Buffalograss Challenged with the Leaf Spot Pathogen Curvularia inaequalis.

Bimal S. Amaradasa; Keenan Amundsen

Buffalograss (Bouteloua dactyloides) is a low maintenance U. S. native turfgrass species with exceptional drought, heat, and cold tolerance. Leaf spot caused by Curvularia inaequalis negatively impacts buffalograss visual quality. Two leaf spot susceptible and two resistant buffalograss lines were challenged with C. inaequalis. Samples were collected from treated and untreated leaves when susceptible lines showed symptoms. Transcriptome sequencing was done and differentially expressed genes were identified. Approximately 27 million raw sequencing reads were produced per sample. More than 86% of the sequencing reads mapped to an existing buffalograss reference transcriptome. De novo assembly of unmapped reads was merged with the existing reference to produce a more complete transcriptome. There were 461 differentially expressed transcripts between the resistant and susceptible lines when challenged with the pathogen and 1552 in its absence. Previously characterized defense-related genes were identified among the differentially expressed transcripts. Twenty one resistant line transcripts were similar to genes regulating pattern triggered immunity and 20 transcripts were similar to genes regulating effector triggered immunity. There were also nine up-regulated transcripts in resistance lines which showed potential to initiate systemic acquired resistance (SAR) and three transcripts encoding pathogenesis-related proteins which are downstream products of SAR. This is the first study characterizing changes in the buffalograss transcriptome when challenged with C. inaequalis.


Journal of Economic Entomology | 2015

Morphology and Proteome Characterization of the Salivary Glands of the Western Chinch Bug (Hemiptera: Blissidae).

Crystal Ramm; Astri Wayadande; Lisa M. Baird; Renu Nandakumar; Nandakumar Madayiputhiya; Keenan Amundsen; Teresa Donze-Reiner; Frederick P. Baxendale; Gautam Sarath; Tiffany Heng-Moss

ABSTRACT The western chinch bug, Blissus occiduus Barber, is a serious pest of buffalograss, Buchloe dactyloides (Nuttall) due to physical and chemical damage caused during the feeding process. Although previous work has investigated the feeding behaviors of chinch bugs in the Blissus complex, no study to date has explored salivary gland morphology and the associated salivary complex of this insect. Whole and sectioned B. occiduus salivary glands were visualized using light and scanning electron microscopy to determine overall structure and cell types of the salivary glands and their individual lobes. Microscopy revealed a pair of trilobed principal glands and a pair of tubular accessory glands of differing cellular types. To link structure with function, the salivary gland proteome was characterized using liquid chromatography tandem mass spectrometry. The salivary proteome analysis resulted in B. occiduus sequences matching 228 nonhomologous protein sequences of the pea aphid, Acyrthosiphon pisum (Harris), with many specific to the proteins present in the salivary proteome of A. pisum. A number of sequences were assigned the molecular function of hydrolase and oxido-reductase activity, with one specific protein sequence revealing a peroxidase-like function. This is the first study to characterize the salivary proteome of B. occiduus and the first of any species in the family Blissidae.


Frontiers in Plant Science | 2018

Gene Expression Profiling of Iron Deficiency Chlorosis Sensitive and Tolerant Soybean Indicates Key Roles for Phenylpropanoids under Alkalinity Stress

Brian M. Waters; Keenan Amundsen; George L. Graef

Alkaline soils comprise 30% of the earth and have low plant-available iron (Fe) concentration, and can cause iron deficiency chlorosis (IDC). IDC causes soybean yield losses of

Collaboration


Dive into the Keenan Amundsen's collaboration.

Top Co-Authors

Avatar

Tiffany Heng-Moss

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Bimal S. Amaradasa

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Gautam Sarath

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Scott E. Warnke

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Teresa Donze-Reiner

West Chester University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Paul Twigg

University of Nebraska at Kearney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit J. Jhala

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Crystal Ramm

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Frederick P. Baxendale

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge