Kees Hovingh
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kees Hovingh.
Circulation-cardiovascular Genetics | 2013
Roshni R. Singaraja; Suthesh Sivapalaratnam; Kees Hovingh; Marie-Pierre Dubé; Jose Castro-Perez; Heidi L. Collins; Steven J. Adelman; Meliana Riwanto; Jasmin Manz; Brian K. Hubbard; Ian Tietjen; Kenny K. Wong; Lyndon J. Mitnaul; Margaret van Heek; Linus S. Lin; Thomas A. Roddy; Jason McEwen; Geesje Dallinge-Thie; Leonie van Vark-van der Zee; Germaine C. Verwoert; Michael Winther; Cornelia van Duijn; Albert Hofman; Mieke D. Trip; A. David Marais; Bela F. Asztalos; Ulf Landmesser; Eric J.G. Sijbrands; John J. P. Kastelein; Michael R. Hayden
Background—Endothelial lipase is a phospholipase with activity against high-density lipoprotein. Although a small number of mutations in LIPG have been described, the role of LIPG in protection against atherosclerosis is unclear. Methods and Results—We identified 8 loss-of-function (LOF) mutations in LIPG in individuals with high-density lipoprotein cholesterol. Functional analysis confirmed that most rare mutations abolish lipase activity in vitro, indicating complete LOF, whereas 2 more common mutations N396S and R476W reduce activity by ≈50%, indicating partial LOF and implying ≈50% and ≈75% remaining endothelial lipase function in heterozygous complete LOF and partial LOF mutation carriers, respectively. complete LOF mutation carriers had significantly higher plasma high-density lipoprotein cholesterol levels compared with partial LOF mutation carriers. Apolipoprotein B-depleted serum from complete LOF carriers showed significantly enhanced cholesterol efflux acceptor capacity, whereas only trends were observed in partial LOF carriers. Carriers of LIPG mutations exhibited trends toward reduced coronary artery disease in 4 independent cohorts (meta-analysis odds ratio, 0.7; P=0.04). Conclusions—Our data suggest that the impact of LIPG mutations is directly related to their effect on endothelial lipase function and support that antagonism of endothelial lipase function improves cardioprotection.
PLOS ONE | 2012
Suthesh Sivapalaratnam; Hanneke Basart; Nicholas A. Watkins; Stepanie Maiwald; Augusto Rendon; Unni Krishnan; Brigitte M. Sondermeijer; Esther E. Creemers; Sara Johanna Pinto-Sietsma; Kees Hovingh; Willem H. Ouwehand; John J. P. Kastelein; Alison H. Goodall; Mieke D. Trip
The burden of cardiovascular disease (CVD) cannot be fully addressed by therapy targeting known pathophysiological pathways. Even with stringent control of all risk factors CVD events are only diminished by half. A number of additional pathways probably play a role in the development of CVD and might serve as novel therapeutic targets. Genome wide expression studies represent a powerful tool to identify such novel pathways. We compared the expression profiles in monocytes from twenty two young male patients with premature familial CAD with those from controls matched for age, sex and smoking status, without a family history of CVD. Since all patients were on statins and aspirin treatment, potentially affecting the expression of genes in monocytes, twelve controls were subsequently treated with simvastatin and aspirin for 6 and 2 weeks, respectively. By whole genome expression arrays six genes were identified to have differential expression in the monocytes of patients versus controls; ABCA1, ABCG1 and RGS1 were downregulated in patients, whereas ADRB2, FOLR3 and GSTM1 were upregulated. Differential expression of all genes, apart from GSTM1, was confirmed by qPCR. Aspirin and statins altered gene expression of ABCG1 and ADBR2. All finding were validated in a second group of twenty four patients and controls. Differential expression of ABCA1, RSG1 and ADBR2 was replicated. In conclusion, we identified these 3 genes to be expressed differently in CAD cases which might play a role in the pathogenesis of atherosclerotic vascular disease.
Human Molecular Genetics | 2015
Ursula M. Schick; Paul L. Auer; Joshua C. Bis; Honghuang Lin; Peng Wei; Nathan Pankratz; Leslie A. Lange; Jennifer A. Brody; Nathan O. Stitziel; Daniel S. Kim; Christopher S. Carlson; Myriam Fornage; Jeffery Haessler; Li Hsu; Rebecca D. Jackson; Charles Kooperberg; Suzanne M. Leal; Bruce M. Psaty; Eric Boerwinkle; Russell P. Tracy; Diego Ardissino; Svati H. Shah; Cristen J. Willer; Ruth J. F. Loos; Olle Melander; Ruth McPherson; Kees Hovingh; Muredach P. Reilly; Hugh Watkins; Domenico Girelli
C-reactive protein (CRP) concentration is a heritable systemic marker of inflammation that is associated with cardiovascular disease risk. Genome-wide association studies have identified CRP-associated common variants associated in ∼25 genes. Our aims were to apply exome sequencing to (1) assess whether the candidate loci contain rare coding variants associated with CRP levels and (2) perform an exome-wide search for rare variants in novel genes associated with CRP levels. We exome-sequenced 6050 European-Americans (EAs) and 3109 African-Americans (AAs) from the NHLBI-ESP and the CHARGE consortia, and performed association tests of sequence data with measured CRP levels. In single-variant tests across candidate loci, a novel rare (minor allele frequency = 0.16%) CRP-coding variant (rs77832441-A; p.Thr59Met) was associated with 53% lower mean CRP levels (P = 2.9 × 10(-6)). We replicated the association of rs77832441 in an exome array analysis of 11 414 EAs (P = 3.0 × 10(-15)). Despite a strong effect on CRP levels, rs77832441 was not associated with inflammation-related phenotypes including coronary heart disease. We also found evidence for an AA-specific association of APOE-ε2 rs7214 with higher CRP levels. At the exome-wide significance level (P < 5.0 × 10(-8)), we confirmed associations for reported common variants of HNF1A, CRP, IL6R and TOMM40-APOE. In gene-based tests, a burden of rare/lower frequency variation in CRP in EAs (P ≤ 6.8 × 10(-4)) and in retinoic acid receptor-related orphan receptor α (RORA) in AAs (P = 1.7 × 10(-3)) were associated with CRP levels at the candidate gene level (P < 2.0 × 10(-3)). This inquiry did not elucidate novel genes, but instead demonstrated that variants distributed across the allele frequency spectrum within candidate genes contribute to CRP levels.
Expert Opinion on Drug Safety | 2013
Kees Hovingh; Joost Besseling; John J. P. Kastelein
Introduction: Mipomersen is a first-in-class drug indicated as an adjunct to lipid-lowering medications and diet to reduce low-density lipoprotein-cholesterol (LDL-C), apolipoprotein B (apoB), total cholesterol (TC) and non-high density lipoprotein-cholesterol (non-HDL-C) in patients with homozygous familial hypercholesterolemia (HoFH). Areas covered: This article summarizes the efficacy and safety profile of mipomersen based on literature, public materials available from the Endocrinologic and Metabolic Drugs Advisory Committee meeting (FDA) in review of the New Drug Application (NDA 203568) and the recent product label. Expert opinion: Patients suffering from HoFH are characterized by elevated levels of LDL-C and are, therefore, at severely increased risk for cardiovascular disease (CVD). Currently available lipid-lowering therapies (LLT), such as statins, have been shown to lower LDL-C levels and CVD risk. However, in patients suffering from HoFH, additional therapy is urgently needed to further decrease LDL-C levels and CVD risk. Mipomersen (Kynamro) has recently been approved by the FDA as a novel LLT modality in patients with HoFH. Mipomersen has been show to result in highly relevant absolute LDL-C reductions in HoFH patients, and given the undisputed causal relationship between LDL-C levels and CVD risk, this additional LDL-C lowering is expected to result in a robust CVD risk reduction.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2016
Aurélie Thedrez; Barbara Sjouke; Maxime Passard; Simon Prampart-Fauvet; Alexis Guédon; Mikaël Croyal; Geesje M. Dallinga-Thie; Jorge Peter; Dirk Blom; Milco Ciccarese; Angelo B. Cefalù; Livia Pisciotta; Raul D. Santos; Maurizio Averna; Frederick J. Raal; Paolo Pintus; Maria Cossu; Kees Hovingh; Gilles Lambert
Objective—Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors lower low-density lipoprotein (LDL) cholesterol in the vast majority of patients with autosomal dominant familial hypercholesterolemia. Will PCSK9 inhibition with monoclonal antibodies, in particular alirocumab, be of therapeutic value for patients with autosomal recessive hypercholesterolemia (ARH)? Approach and Results—Primary lymphocytes were obtained from 28 genetically characterized ARH patients and 11 controls. ARH lymphocytes treated with mevastatin were incubated with increasing doses of recombinant PCSK9 with or without saturating concentrations of alirocumab. Cell surface LDL receptor expression measured by flow cytometry and confocal microscopy was higher in ARH than in control lymphocytes. PCSK9 significantly reduced LDL receptor expression in ARH lymphocytes albeit to a lower extent than in control lymphocytes (25% versus 76%, respectively), an effect reversed by alirocumab. Fluorescent LDL cellular uptake, also measured by flow cytometry, was reduced in ARH lymphocytes compared with control lymphocytes. PCSK9 significantly lowered LDL cellular uptake in ARH lymphocytes, on average by 18%, compared with a 46% reduction observed in control lymphocytes, an effect also reversed by alirocumab. Overall, the effects of recombinant PCSK9, and hence of alirocumab, on LDL receptor expression and function were significantly less pronounced in ARH than in control cells. Conclusions—PCSK9 inhibition with alirocumab on top of statin treatment has the potential to lower LDL cholesterol in some autosomal recessive hypercholesterolemia patients.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2016
Aurélie Thedrez; Barbara Sjouke; Maxime Passard; Simon Prampart-Fauvet; Alexis Guédon; Mikaël Croyal; Geesje M. Dallinga-Thie; Jorge Peter; Dirk Blom; Milco Ciccarese; Angelo B. Cefalù; Livia Pisciotta; Raul D. Santos; Maurizio Averna; Frederick J. Raal; Paolo Pintus; Maria Cossu; Kees Hovingh; Gilles Lambert
Objective—Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors lower low-density lipoprotein (LDL) cholesterol in the vast majority of patients with autosomal dominant familial hypercholesterolemia. Will PCSK9 inhibition with monoclonal antibodies, in particular alirocumab, be of therapeutic value for patients with autosomal recessive hypercholesterolemia (ARH)? Approach and Results—Primary lymphocytes were obtained from 28 genetically characterized ARH patients and 11 controls. ARH lymphocytes treated with mevastatin were incubated with increasing doses of recombinant PCSK9 with or without saturating concentrations of alirocumab. Cell surface LDL receptor expression measured by flow cytometry and confocal microscopy was higher in ARH than in control lymphocytes. PCSK9 significantly reduced LDL receptor expression in ARH lymphocytes albeit to a lower extent than in control lymphocytes (25% versus 76%, respectively), an effect reversed by alirocumab. Fluorescent LDL cellular uptake, also measured by flow cytometry, was reduced in ARH lymphocytes compared with control lymphocytes. PCSK9 significantly lowered LDL cellular uptake in ARH lymphocytes, on average by 18%, compared with a 46% reduction observed in control lymphocytes, an effect also reversed by alirocumab. Overall, the effects of recombinant PCSK9, and hence of alirocumab, on LDL receptor expression and function were significantly less pronounced in ARH than in control cells. Conclusions—PCSK9 inhibition with alirocumab on top of statin treatment has the potential to lower LDL cholesterol in some autosomal recessive hypercholesterolemia patients.
Biochimica et Biophysica Acta | 2015
Stefan Ljunggren; Johannes H. M. Levels; Kees Hovingh; Adriaan G. Holleboom; Menno Vergeer; Letta Argyri; Christina Gkolfinopoulou; Angeliki Chroni; Jeroen A. Sierts; John J. P. Kastelein; Jan Albert Kuivenhoven; Mats Lindahl; Helen Karlsson
The scavenger receptor class B type 1 (SR-B1) is an important HDL receptor involved in cholesterol uptake and efflux, but its physiological role in human lipoprotein metabolism is not fully understood. Heterozygous carriers of the SR-B1(P297S) mutation are characterized by increased HDL cholesterol levels, impaired cholesterol efflux from macrophages and attenuated adrenal function. Here, the composition and function of lipoproteins were studied in SR-B1(P297S) heterozygotes.Lipoproteins from six SR-B1(P297S) carriers and six family controls were investigated. HDL and LDL/VLDL were isolated by ultracentrifugation and proteins were separated by two-dimensional gel electrophoresis and identified by mass spectrometry. HDL antioxidant properties, paraoxonase 1 activities, apoA-I methionine oxidations and HDL cholesterol efflux capacity were assessed.Multivariate modeling separated carriers from controls based on lipoprotein composition. Protein analyses showed a significant enrichment of apoE in LDL/VLDL and of apoL-1 in HDL from heterozygotes compared to controls. The relative distribution of plasma apoE was increased in LDL and in lipid-free form. There were no significant differences in paraoxonase 1 activities, HDL antioxidant properties or HDL cholesterol efflux capacity but heterozygotes showed a significant increase of oxidized methionines in apoA-I.The SR-B1(P297S) mutation affects both HDL and LDL/VLDL protein compositions. The increase of apoE in carriers suggests a compensatory mechanism for attenuated SR-B1 mediated cholesterol uptake by HDL. Increased methionine oxidation may affect HDL function by reducing apoA-I binding to its targets. The results illustrate the complexity of lipoprotein metabolism that has to be taken into account in future therapeutic strategies aiming at targeting SR-B1.
European Journal of Preventive Cardiology | 2017
Robert Leipold; Frederick J. Raal; Jack Ishak; Kees Hovingh; Helen Phillips
Background Patients with homozygous familial hypercholesterolemia are at high risk of cardiovascular disease due to high low-density lipoprotein (LDL)-cholesterol levels. Cardiovascular disease outcome studies are impossible to conduct, due to the rarity of homozygous familial hypercholesterolemia. We modelled the potential efficacy of lomitapide, a microsomal transfer protein inhibitor, on major adverse cardiovascular events (MACEs) and survival. Design We calculated the effect on cardiovascular outcomes of a 38% plasma LDL-cholesterol reduction induced by lomitapide. Methods Age-dependent hazards and treatment-dependent hazard ratios for mortality and time to first MACE were calculated from an observational study of 149 South African homozygous familial hypercholesterolemia patients. Cardiovascular-related mortality hazards were derived by adjusting for general population non-cardiovascular-related mortality. For every mmol/L LDL-cholesterol reduction, a relative risk reductions of 23% (mortality) and 15% (major adverse cardiovascular events) were observed. Results For the most robust model, baseline median survival with current treatments (LDL-cholesterol 8.7 mmol/L) was 48 years. In the survival benefit analysis, starting lomitapide at age 18 years and reducing LDL-cholesterol by 3.3 mmol/L from baseline would increase life expectancy by 11.2 years and delay the time to first MACE by 5.7 years. Analysis suggested lifetime lomitapide treatment could increase median life expectancy by 11.7 years and time to first MACE by 6.7 years. Conclusion Our modelling analyses show that additional LDL-cholesterol lowering by lomitapide may increase life expectancy in patients with homozygous familial hypercholesterolemia. Further clinical studies are warranted to determine the cardiovascular morbidity and mortality benefits of lomitapide.
Circulation-cardiovascular Genetics | 2012
Roshni R. Singaraja; Suthesh Sivapalaratnam; Kees Hovingh; Marie-Pierre Dubé; Jose Castro-Perez; Heidi L. Collins; Steven J. Adelman; Meliana Riwanto; Jasmin Manz; Brian K. Hubbard; Ian Tietjen; Kenny K. Wong; Lyndon J. Mitnaul; Margaret van Heek; Linus S. Lin; Thomas A. Roddy; Jason McEwen; Geesje Dallinge-Thie; Leonie van Vark-van der Zee; Germaine C. Verwoert; Michael Winther; Cornelia van Duijn; Albert Hofman; Mieke D. Trip; A. David Marais; Bela F. Asztalos; Ulf Landmesser; Eric J.G. Sijbrands; John J. P. Kastelein; Michael R. Hayden
Background—Endothelial lipase is a phospholipase with activity against high-density lipoprotein. Although a small number of mutations in LIPG have been described, the role of LIPG in protection against atherosclerosis is unclear. Methods and Results—We identified 8 loss-of-function (LOF) mutations in LIPG in individuals with high-density lipoprotein cholesterol. Functional analysis confirmed that most rare mutations abolish lipase activity in vitro, indicating complete LOF, whereas 2 more common mutations N396S and R476W reduce activity by ≈50%, indicating partial LOF and implying ≈50% and ≈75% remaining endothelial lipase function in heterozygous complete LOF and partial LOF mutation carriers, respectively. complete LOF mutation carriers had significantly higher plasma high-density lipoprotein cholesterol levels compared with partial LOF mutation carriers. Apolipoprotein B-depleted serum from complete LOF carriers showed significantly enhanced cholesterol efflux acceptor capacity, whereas only trends were observed in partial LOF carriers. Carriers of LIPG mutations exhibited trends toward reduced coronary artery disease in 4 independent cohorts (meta-analysis odds ratio, 0.7; P=0.04). Conclusions—Our data suggest that the impact of LIPG mutations is directly related to their effect on endothelial lipase function and support that antagonism of endothelial lipase function improves cardioprotection.
Circulation Research | 2018
Manon Viaud; Stoyan Ivanov; Nemanja Vujic; Madalina Duta-Mare; Lazaro-Emilio Aira; Thibault Barouillet; Elsa Garcia; François Orange; Isabelle Dugail; Isabelle Hainault; Christian Stehlik; Sandrine Marchetti; Laurent Boyer; Rodolphe Guinamard; Fabienne Foufelle; Andrea E. Bochem; Kees Hovingh; Edward B. Thorp; Emmanuel L. Gautier; Dagmar Kratky; Paul Dasilva-Jardine; Laurent Yvan-Charvet
Rationale: Macrophages face a substantial amount of cholesterol after the ingestion of apoptotic cells, and the LIPA (lysosomal acid lipase) has a major role in hydrolyzing cholesteryl esters in the endocytic compartment. Objective: Here, we directly investigated the role of LIPA-mediated clearance of apoptotic cells both in vitro and in vivo. Methods and Results: We show that LIPA inhibition causes a defective efferocytic response because of impaired generation of 25-hydroxycholesterol and 27-hydroxycholesterol. Reduced synthesis of 25-hydroxycholesterol after LIPA inhibition contributed to defective mitochondria-associated membrane leading to mitochondrial oxidative stress–induced NLRP3 (NOD-like receptor family, pyrin domain containing) inflammasome activation and caspase-1–dependent Rac1 (Ras-related C3 botulinum toxin substrate 1) degradation. A secondary event consisting of failure to appropriately activate liver X receptor–mediated pathways led to mitigation of cholesterol efflux and apoptotic cell clearance. In mice, LIPA inhibition caused defective clearance of apoptotic lymphocytes and stressed erythrocytes by hepatic and splenic macrophages, culminating in splenomegaly and splenic iron accumulation under hypercholesterolemia. Conclusions: Our findings position lysosomal cholesterol hydrolysis as a critical process that prevents metabolic inflammation by enabling efficient macrophage apoptotic cell clearance.