Keila Karine Duarte Campos
Universidade Federal de Ouro Preto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Keila Karine Duarte Campos.
Cellular Immunology | 2013
Keila Karine Duarte Campos; Rafaela Gontijo Manso; Evandro Guedes Gonçalves; Marcelo Eustáquio Silva; Wanderson Geraldo de Lima; Cristiane Alves da Silva Menezes; Frank Silva Bezerra
The most common factor related to the chronic obstructive pulmonary disease (COPD) development is the chronic smoking habit. Our study describes the temporal kinesis of pulmonary cellular influx through BALF analyses of mice acutely exposed to cigarette smoke (CS), the oxidative damage and antioxidative enzyme activities. Thirty-six mice (C57BL/6, 8weeks old, male) were divided in 6 groups: the control group (CG), exposed to ambient air, and the other 30 mice were exposed to CS. Mice exposed to CS presented, especially after the third day of exposure, different cellular subpopulations in BALF. The oxidative damage was significantly higher in CS exposed groups compared to CG. Our data showed that the evaluated inflammatory cells, observed after three days of CS exposure, indicate that this time point could be relevant to studies focusing on these cellular subpopulation activities and confirm the oxidative stress even in a short term CS exposure.
Environmental Pollution | 2016
Giselle Luciane Murta; Keila Karine Duarte Campos; Ana Carla Balthar Bandeira; Mirla Fiuza Diniz; Guilherme de Paula Costa; Daniela Caldeira Costa; André Talvani; Wanderson Geraldo de Lima; Frank Silva Bezerra
The formaldehyde (FA) is a crosslinking agent that reacts with cellular macromolecules such as proteins, nucleic acids and molecules with low molecular weight such as amino acids, and it has been linked to inflammatory processes and oxidative stress. This study aimed to analyze the oxidative effects on pulmonary inflammatory response in Fischer rats exposed to different concentrations of FA. Twenty-eight Fischer rats were divided into 4 groups (N = 7). The control group (CG) was exposed to ambient air and three groups were exposed to different concentrations of FA: 1% (FA1%), 5% (FA5%) and 10% (FA10%). In the Bronchoalveolar Lavage Fluid (BALF), the exposure to a concentration of 10% promoted the increase of inflammatory cells compared to CG. There was also an increase of macrophages and lymphocytes in FA10% and lymphocytes in FA5% compared to CG. The activity of NADPH oxidase in the blood had been higher in FA5% and FA10% compared to CG. The activity of superoxide dismutase enzyme (SOD) had an increase in FA5% and the activity of the catalase enzyme (CAT) showed an increase in FA1% compared to CG. As for the glutathione system, there was an increase in total glutathione (tGSH), reduced glutathione (GSH) and oxidized glutathione (GSSG) in FA5% compared to CG. The reduced/oxidized glutathione ratio (GSH/GSSG) had a decrease in FA5% compared to CG. There was an increase in lipid peroxidation compared to all groups and the protein carbonyl formation in FA10% compared to CG. We also observed an increase in CCL2 and CCL5 chemokines in the treatment groups compared to CG and in serum there was an increase in CCL2, CCL3 and CCL5 compared to CG. Our results point out to the potential of formaldehyde in promoting airway injury by increasing the inflammatory process as well as by the redox imbalance.
Experimental Lung Research | 2014
Keila Karine Duarte Campos; Vitor Alves Dourado; Mirla Fiuza Diniz; Frank Silva Bezerra; Wanderson Geraldo de Lima
Smoking during pregnancy is directly associated with numerous serious conditions, such as premature birth, low birth weight, and perinatal mortality. We quantitatively evaluated histological inflammatory alterations, oxidative damage by lipid peroxidation, the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in the lungs of mice exposed to cigarette smoke during pregnancy. Eight female and four male mice were mated for five days. Pregnant female mice were randomly allocated to the control group or to the cigarette smoke group (n = 8) in which they were exposed to 12 cigarettes per day in an exposure chamber, three times a day for 21 days. The control group (CG; n = 8) was kept in the exposure chamber for the same duration, but without exposure to cigarette smoke. Six newborn mice from both groups were weighed 24 hours after birth and then euthanized. Lung tissue was collected and subjected to histomorphometric and biochemical analyses. The cigarette smoke group showed a significant reduction in snout-vent length compared to the control group. Histomorphometric analysis indicated increased alveolar septal thickness and a larger alveolar lumen in mice exposed to cigarette smoke than in mice in the control group. We observed increased alveolar inflammatory infiltrate, decreased SOD activity, and significantly higher oxidative damage in the cigarette smoke group. Our data indicate that cigarette smoke exposure during pregnancy decreases body length at birth, changes lung tissue, and causes redox imbalance and histological damage in newborn mice.
Journal of Nutritional Biochemistry | 2017
Keila Karine Duarte Campos; Glaucy Rodrigues de Araújo; Thais Lourenço Martins; Ana Carla Balthar Bandeira; Guilherme de Paula Costa; André Talvani; Camila Carrião Machado Garcia; Laser Antônio Machado Oliveira; Daniela Caldeira Costa; Frank Silva Bezerra
Lycopene is a carotenoid with known antioxidant and anti-inflammatory properties. We aimed to evaluate the in vitro and in vivo effects of lycopene on reducing the redox imbalance and inflammation induced by cigarette smoke (CS). For the in vitro study, J774A.1 (macrophages) cells were incubated in the presence of 0.5, 1.0, 2.0, 4.0, 8.0, 10.0 and 25 μM of lycopene for 3, 6 and 24 h or in the presence of 0.1%, 0.25%, 0.5%, 0.625%, 1.25%, 2.25%, 5% and 10% cigarette smoke extract (CSE) for 3, 6 and 24 h to assess cell viability and measurement of intracellular reactive oxygen species (ROS). For the in vivo study, 40 mice were divided into 5 groups: a control exposed to ambient air (CG), a vehicle-control group that received 200 μl of sunflower oil by orogastric gavage, a group exposed to CS and two groups administered lycopene (diluted in sunflower oil) at doses of either 25 or 50 mg/kg/day prior to exposure to CS (LY25+CS and LY50+CS). The total treatment time lasted 5 days. A cell viability decrease was observed at 10- and 25-μM concentrations of lycopene in 3, 6 and 24 h compared with CG. There was an increase of ROS production in 24 h in CS compared with CG. Lycopene concentrations of 1 μM and 2 μM were able to reduce the production of ROS in 24 h compared with CS. In the bronchoalveolar lavage fluid, the total number of leukocytes increased in the CS group compared with the control groups (CG). Administration with lycopene at the highest dose suppressed this CS-induced increase in leukocytes. Lipid peroxidation and DNA damage increased in the CS group compared with that in the controls, and this increase was suppressed by lycopene at the highest dose. In contrast, superoxide dismutase activity decreased in the CS group compared with that in the controls. Catalase activity also increased in the CS group compared with that in both control groups, and this increase was suppressed in LY25+CS and LY50+CS. There was an increase in the levels of tumor necrosis factor-α, interferon-γ and interleukin-10 after exposure to CS, and these effects were suppressed by both doses of lycopene. These data elucidate the role of lycopene as an antioxidant and anti-inflammatory agent in these two models of short-term exposure to CS.
Experimental Lung Research | 2015
Keila Karine Duarte Campos; Simone Floresta Leal; Daniela Caldeira Costa; Wanderson Geraldo de Lima; Frank Silva Bezerra
ABSTRACT Purpose: The aim of this study was to evaluate of the effect of distilled water and saline ultrasonic nebulization on the inflammatory and oxidative stress responses and on the lower airway architecture. Materials and Methods: Twenty-one male Fischer rats were distributed into 3 groups of 7 animals each: a control group (CG), exposed to ambient air; a saline group (SG), exposed to 0.9% sodium chloride (NaCl); and a group exposed to distilled water (DWG). The exposure was carried out in a box attached to an ultrasonic inhaler, occurring for 20 min, 3 times a day for 6 months. At 24h after the last exposure, the animals were euthanized. The bronchoalveolar lavage fluid (BALF) and lungs were collected for study. Results: There was an increase of inflammatory cells in the pulmonary tissue BALF in the DWG compared with the CG. The DWG showed an increase of inflammatory cells compared with the SG and CG. The DWG and SG had higher NADPH oxidase activity than the CG. The volume density (Vv) of the alveolar septum was higher in the DWG than in the SG and CG, and the DWG also had a higher Vv of collagen fibers than the other 2 groups. The DWG presented elevated content of thiobarbituric acid reactive substances in lung homogenates relative to the SG and CG. Conclusions: The ultrasonic nebulization of distilled water increased the influx of inflammatory cells and oxidative damage, and promoted changes in the lung architecture.
International Journal of Toxicology | 2015
Túlio Henrique Versiani de Oliveira; Keila Karine Duarte Campos; Nícia Pedreira Soares; Karina Braga Pena; Wanderson Geraldo de Lima; Frank Silva Bezerra
Chloroform is an organic solvent used as an intermediate in the synthesis of various fluorocarbons. Despite its widespread use in industry and agriculture, exposure to chloroform can cause illnesses such as cancer, especially in the liver and kidneys. The aim of the study was to analyze the effects of chloroform on redox imbalance and pulmonary inflammatory response in adult C57BL/6 mice. Forty animals were divided into 4 groups (N = 10): female (FCG) and male (MCG) controls, and females (FEG) and males (MEG) exposed to chloroform (7.0 ppm) 3 times/d for 20 minutes for 5 days. Total and differential cell counts, oxidative damage analysis, and protein carbonyl and antioxidant enzyme catalase (CAT) activity measurements were performed. Morphometric analyses included alveolar area (Aa) and volume density of alveolar septa (Vv) measurements. Compared to FCG and MCG, inflammatory cell influx, oxidative damage to lipids and proteins, and CAT activity were higher in FEG and MEG, respectively. Oxidative damage and enzyme CAT activity were higher in FEG than in FCG. The Aa was higher in FEG and MEG than in FCG and MCG, respectively. The Vv was lower in FEG and MEG than in FCG and MCG, respectively. This study highlights the risks of occupational chloroform exposure at low concentrations and the intensity of oxidative damage related to gender. The results validate a model of acute exposure that provides cellular and biochemical data through short-term exposure to chloroform.
Toxicology and Industrial Health | 2017
Thais Lourenço Martins; Keila Karine Duarte Campos; Natália Pereira da Silva Araújo; Dafne Fernandes Machado; Frank Silva Bezerra
This study aimed to evaluate the extrapulmonary effects of exposure to cigarette smoke (CS) through the analysis of blood components and histopathological examinations of the trachea and diaphragm muscle (DM) in C57BL/6 mice. Thirty-six animals were exposed to six cigarettes per day for 5 days. The mice were divided into a control group (CG) and groups exposed to CS for 1 (CS1D), 2 (CS2D), 3 (CS3D), 4 (CS4D), and 5 (CS5D) days. The trachea, DM, and blood were collected for morphometric and biochemical analyses. In comparison with the CG, CS4D and CS5D mice showed an increased influx of inflammatory cells into the DM and trachea. Increased glycogen deposits in the tracheal tissue of CS3D mice were observed, compared with that in CG, CS1D, and CS2D mice. In the blood serum, the number of inflammatory cells and the concentration of cholesterol increased in CS1D mice, compared with the CG. Alanine aminotransferase (ALT) levels were elevated in CS5D mice, compared with those in CS3D and CS4D mice. Aspartate aminotransferase (AST) levels were elevated in CS3D and CS5D mice, compared with those in the CG. Urea levels were significantly increased in CS5D mice, compared with CS1D mice. Our results showed extrapulmonary effects of short-term exposure to CS in adult mice.
Experimental and Toxicologic Pathology | 2017
Camila de Oliveira Ramos; Clarissa Rodrigues Nardeli; Keila Karine Duarte Campos; Karina Braga Pena; Dafne Fernandes Machado; Ana Carla Balthar Bandeira; Guilherme de Paula Costa; André Talvani; Frank Silva Bezerra
Twenty-eight Fischer male rats were divided into four groups: control group (CG), exposed to the ambient air, and groups exposed to formaldehyde (FA) at concentrations of 1% (FA1%), 5% (FA5%) and 10% (FA10%). Kidney function was assessed by dosage of uric acid, creatinine and urea. Morphometry was performed on the thickness of the lumen of Bowmans capsule and diameter of the lumen of the renal tubules. We evaluated the redox imbalance through the catalase and superoxide dismutase activity as well as oxidative damage by lipid peroxidation. Inflammatory chemokines CCL2, CCL3 and CCL5 were analyzed by enzyme immunoassays. There was an increase in the concentration of urea in FA10% compared with CG and FA1%. The levels of creatinine, renal lumen and lipid peroxidation increased in all FA-treated groups compared with CG. The concentration of uric acid in FA10% was lower compared with all other groups. There was an increase in the space of Bowmans capsule in FA5% and FA10% compared with CG and FA1%. However, the superoxide dismutase activity was higher in FA5% compared with other groups while CCL5 was higher in FA1% compared with CG. The exposure to formaldehyde in a short period of time leads to changes in the kidney function, inflammation and morphology, as well as promoted the increase of superoxide dismutase activity and oxidative damage.
Oxidative Medicine and Cellular Longevity | 2016
Nícia Pedreira Soares; Keila Karine Duarte Campos; Karina Braga Pena; Ana Carla Balthar Bandeira; André Talvani; Marcelo Eustáquio Silva; Frank Silva Bezerra
Obesity is a multifactorial disease with genetic, social, and environmental influences. This study aims at analyzing the effects of the combination of a refined carbohydrate diet and exposure to hyperoxia on the pulmonary oxidative and inflammatory response in mice. Twenty-four mice were divided into four groups: control group (CG), hyperoxia group (HG), refined carbohydrate diet group (RCDG), and refined carbohydrate diet + hyperoxia group (RCDHG). The experimental diet was composed of 10% sugar, 45% standard diet, and 45% sweet condensed milk. For 24 hours, the HG and RCDHG were exposed to hyperoxia and the CG and RCDG to ambient air. After the exposures were completed, the animals were euthanized, and blood, bronchoalveolar lavage fluid, and lungs were collected for analyses. The HG showed higher levels of interferon-γ in adipose tissue as compared to other groups and higher levels of interleukin-10 and tumor necrosis factor-α compared to the CG and RCDHG. SOD and CAT activities in the pulmonary parenchyma decreased in the RCDHG as compared to the CG. There was an increase of lipid peroxidation in the HG, RCDG, and RCDHG as compared to the CG. A refined carbohydrate diet combined with hyperoxia promoted inflammation and redox imbalance in adult mice.
International Immunopharmacology | 2018
Dafne Fernandes Machado; Keila Karine Duarte Campos; Natália Pereira da Silva; Camila de Oliveira Ramos; Silvia Dantas Cangussú; Guilherme de Paula Costa; André Talvani; Frank Silva Bezerra
ABSTRACT The alveolar surfactant, which composition consists of a unique and complex mixture of lipids and proteins, has immunomodulatory action. This study aimed to evaluate the effects of exogenous surfactant on pulmonary inflammatory response in mice exposed to cigarette smoke (CS). Twenty‐four mice C57BL/6 were divided into four groups: control group exposed to ambient air (CG); surfactant treated group (SG); CS exposed group (CSG) and CS exposed group treated with surfactant (CSSG). For five days, CSG and CSSG were exposed to 12 commercial cigarettes/day and SG and CSSG received the surfactant by intranasal instillation. At the end of the experiment, the animals were euthanatized for the collection of bronchoalveolar lavage fluid (BALF) and lungs. The total number of leukocytes in BALF increased in CSG compared to CG, however, there was a decrease in CSSG compared to CSG. There was an increase in lipid peroxidation in SG and CSG compared to CG while there was a decrease in CSSG compared to CSG. Regarding the antioxidant enzymes, the catalase (CAT) activity increased in all groups compared to CG and the superoxide dismutase (SOD) activity decreased in CSG compared to the CG and SG. There was an increase in TNF in SG, CSG and CSSG compared to CG. There was an increase in IL‐17 in CSSG compared to CG. There was an increase in CCL5 in SG and CSSG compared to CG. Therefore, our results demonstrated that the administration of exogenous surfactant was able to decrease the oxidative processes in the lungs of mice induced by short‐term exposure to CS. HighlightsShort‐term exposure to cigarette smoke causes oxidative damage;The exogenous surfactant decreased the influx of leukocytes in BALF in a mouse model of cigarette‐smoke;Exogenous surfactant administration has not been shown to be able to reduce the inflammatory mediators;Our results showed that administration of exogenous surfactant was able to reestablish SOD activity.