Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keisuke Ekino is active.

Publication


Featured researches published by Keisuke Ekino.


Proteins | 2006

Nontoxic crystal protein from Bacillus thuringiensis demonstrates a remarkable structural similarity to β-pore-forming toxins

Toshihiko Akiba; Kazuhiko Higuchi; Eiichi Mizuki; Keisuke Ekino; Takashi Shin; Michio Ohba; Ryuta Kanai; Kazuaki Harata

Toshihiko Akiba, Kazuhiko Higuchi, Eiichi Mizuki, Keisuke Ekino, Takashi Shin, Michio Ohba, Ryuta Kanai, and Kazuaki Harata* Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, Kurume, Fukuoka, Japan Department of Applied Microbial Technology, Sojo University, Kumamoto, Japan Graduate School of Agriculture, Kyushu University, Fukuoka, Japan


Molecular Microbiology | 2013

gfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O‐glycan in Aspergillus nidulans and Aspergillus fumigatus

Yuji Komachi; Shintaro Hatakeyama; Haruka Motomatsu; Taiki Futagami; Karina Kizjakina; Pablo Sobrado; Keisuke Ekino; Kaoru Takegawa; Masatoshi Goto; Yoshiyuki Nomura; Takuji Oka

The cells walls of filamentous fungi in the genus Aspergillus have galactofuranose (Galf)‐containing polysaccharides and glycoconjugates, including O‐glycans, N‐glycans, fungal‐type galactomannan and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple Galf monomers onto other wall components in Aspergillus nidulans. Using reverse‐genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in Galf antigen biosynthesis. Disruption of gfsA reduced binding of β‐Galf‐specific antibody EB‐A2 to O‐glycosylated WscA protein and galactomannoproteins. The results of an in‐vitro Galf antigen synthase assay revealed that GfsA has β1,5‐ or β1,6‐galactofuranosyltransferase activity for O‐glycans in glycoproteins, uses UDP‐d‐Galf as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ΔgfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature and limited formation of conidia. Several gfsA orthologues were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a fungal β‐galactofuranosyltransferase, which was shown to be involved in Galf antigen biosynthesis of O‐glycans in the Golgi.


Toxins | 2014

Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain

Keisuke Ekino; Shiro Okumura; Tomoyuki Ishikawa; Sakae Kitada; Hiroyuki Saitoh; Tetsuyuki Akao; Takuji Oka; Yoshiyuki Nomura; Michio Ohba; Takashi Shin; Eiichi Mizuki

Parasporin is the cytocidal protein present in the parasporal inclusion of the non-insecticidal Bacillus thuringiensis strains, which has no hemolytic activity but has cytocidal activities, preferentially killing cancer cells. In this study, we characterized a cytocidal protein that belongs to this category, which was designated parasporin-5 (PS5). PS5 was purified from B. thuringiensis serovar tohokuensis strain A1100 based on its cytocidal activity against human leukemic T cells (MOLT-4). The 50% effective concentration (EC50) of PS5 to MOLT-4 cells was approximately 0.075 μg/mL. PS5 was expressed as a 33.8-kDa inactive precursor protein and exhibited cytocidal activity only when degraded by protease at the C-terminal into smaller molecules of 29.8 kDa. Although PS5 showed no significant homology with other known parasporins, a Position Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST) search revealed that the protein showed slight homology to, not only some B. thuringiensis Cry toxins, but also to aerolysin-type β-pore-forming toxins (β-PFTs). The recombinant PS5 protein could be obtained as an active protein only when it was expressed in a precursor followed by processing with proteinase K. The cytotoxic activities of the protein against various mammalian cell lines were evaluated. PS5 showed strong cytocidal activity to seven of 18 mammalian cell lines tested, and low to no cytotoxicity to the others.


Applied and Environmental Microbiology | 2002

Engineering of Polyploid Saccharomyces cerevisiae for Secretion of Large Amounts of Fungal Glucoamylase

Keisuke Ekino; Hiroyuki Hayashi; Masahiro Moriyama; Minoru Matsuda; Masatoshi Goto; Sadazo Yoshino; Kensuke Furukawa

ABSTRACT We engineered Saccharomyces cerevisiae cells that produce large amounts of fungal glucoamylase (GAI) from Aspergillus awamori var. kawachi. To do this, we used the δ-sequence-mediated integration vector system and the heat-induced endomitotic diploidization method. δ-Sequence-mediated integration is known to occur mainly in a particular chromosome, and the copy number of the integration is variable. In order to construct transformants carrying the GAI gene on several chromosomes, haploid cells carrying the GAI gene on different chromosomes were crossed with each other. The cells were then allowed to form spores, which was followed by dissection. Haploid cells containing GAI genes on multiple chromosomes were obtained in this way. One such haploid cell contained the GAI gene on five chromosomes and exhibited the highest GAI activity (5.93 U/ml), which was about sixfold higher than the activity of a cell containing one gene on a single chromosome. Furthermore, we performed heat-induced endomitotic diploidization for haploid transformants to obtain polyploid mater cells carrying multiple GAI genes. The copy number of the GAI gene increased in proportion to the ploidy level, and larger amounts of GAI were secreted.


Genome Announcements | 2014

Draft Genome Sequence of the Formaldehyde-Resistant Fungus Byssochlamys spectabilis No. 5 (Anamorph Paecilomyces variotii No. 5) (NBRC109023)

Takuji Oka; Keisuke Ekino; Kohsai Fukuda; Yoshiyuki Nomura

ABSTRACT Byssochlamys spectabilis no. 5 (anamorph Paecilomyces variotii no. 5) (NBRC109023) was isolated from a soil sample in 2001 in Kumamoto Prefecture, Japan. This fungus is highly resistant to formaldehyde. Here, we report a draft genome sequence of P. variotii no. 5; this draft was produced with the intent of investigating the mechanism of formaldehyde resistance. This is the first report of the genome sequence of any Paecilomyces species.


Glycobiology | 2017

GfsA is a β1,5-galactofuranosyltransferase involved in the biosynthesis of the galactofuran side chain of fungal-type galactomannan in Aspergillus fumigatus

Yukako Katafuchi; Qiushi Li; Yutaka Tanaka; Saki Shinozuka; Yohei Kawamitsu; Minoru Izumi; Keisuke Ekino; Keiji Mizuki; Kaoru Takegawa; Nobuyuki Shibata; Masatoshi Goto; Yoshiyuki Nomura; Kazuyoshi Ohta; Takuji Oka

Previously, we reported that GfsA is a novel galactofuranosyltransferase involved in the biosynthesis of O-glycan, the proper maintenance of fungal morphology, the formation of conidia and anti-fungal resistance in Aspergillus nidulans and A. fumigatus (Komachi Y et al., 2013. GfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and Aspergillus fumigatus. Mol. Microbiol. 90:1054-1073). In the present paper, to gain an in depth-understanding of the enzymatic functions of GfsA in A. fumigatus (AfGfsA), we established an in vitro assay to measure galactofuranosyltransferase activity using purified AfGfsA, UDP-α-d-galactofuranose as a sugar donor, and p-nitrophenyl-β-d-galactofuranoside as an acceptor substrate. LC/MS, 1H-NMR and methylation analyses of the enzymatic products of AfGfsA revealed that this protein has the ability to transfer galactofuranose to the C-5 position of the β-galactofuranose residue via a β-linkage. AfGfsA requires a divalent cation of manganese for maximal activity and consumes UDP-α-d-galactofuranose as a sugar donor. Its optimal pH range is 6.5-7.5 and its optimal temperature range is 20-30°C. 1H-NMR, 13C-NMR and methylation analyses of fungal-type galactomannan extracted from the ∆AfgfsA strain revealed that AfGfsA is responsible for the biosynthesis of β1,5-galactofuranose in the galactofuran side chain of fungal-type galactomannan. Based on these results, we conclude that AfGfsA acts as a UDP-α-d-galactofuranose: β-d-galactofuranoside β1,5-galactofuranosyltransferase in the biosynthetic pathway of galactomannans.


AMB Express | 2012

Purification and properties of S-hydroxymethylglutathione dehydrogenase of Paecilomyces variotii no. 5, a formaldehyde-degrading fungus

Ryohei Fukuda; Kazuhiro Nagahama; Kohsai Fukuda; Keisuke Ekino; Takuji Oka; Yoshiyuki Nomura

S-hydroxymethylglutathione dehydrogenase from Paecilomyces variotii No. 5 strain (NBRC 109023), isolated as a formaldehyde-degrading fungus, was purified by a procedure that included ammonium sulfate precipitation, DEAE-Sepharose and hydroxyapatite chromatography and isoelectrofocusing. Approximately 122-fold purification was achieved with a yield of 10.5%. The enzyme preparation was homogeneous as judged by sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE). The molecular mass of the purified enzyme was estimated to be 49 kDa by SDS-PAGE and gel filtration, suggesting that it is a monomer. Enzyme activity was optimal at pH 8.0 and was stable in the range of pH 7.0–10. The optimum temperature for activity was 40°C and the enzyme was stable up to 40°C. The isoelectric point was pH 5.8. Substrate specificity was very high for formaldehyde. Besides formaldehyde, the only aldehyde or alcohol tested that served as a substrate was pyruvaldehyde. Enzyme activity was enhanced by several divalent cations such as Mn2+ (179%), Ba2+ (132%), and Ca2+ (112%) but was completely inhibited by Ni2+, Fe3+, Hg2+, p-chloromercuribenzoate (PCMB) and cuprizone. Inactivation of the enzyme by sulfhydryl reagents (Hg2+ and PCMB) indicated that the sulfhydryl group of the enzyme is essential for catalytic activity.


Chemical & Pharmaceutical Bulletin | 2018

Estimating the Diffusion Coefficients of Sugars Using Diffusion Experiments in Agar-Gel and Computer Simulations

Shuichi Miyamoto; Kenji Atsuyama; Keisuke Ekino; Takashi Shin

The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.


Toxins | 2015

Response to Leopoldo Palma. Comments on Ekino et al. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain. Toxins 2014, 6, 1882–1895

Keisuke Ekino; Shiro Okumura; Tomoyuki Ishikawa; Sakae Kitada; Hiroyuki Saitoh; Tetsuyuki Akao; Takuji Oka; Yoshiyuki Nomura; Michio Ohba; Takashi Shin; Eiichi Mizuki

I appreciate the thoughtful comments from Dr. Leopoldo Palma [1] on our research about cytotoxic protein parasporin-5 produced by Bacillus thuringiensis (BT) A1100 strain [2]. [...]


Applied and Environmental Microbiology | 1997

Expression and functional analysis of a hyperglycosylated glucoamylase in a parental host, Aspergillus awamori var. kawachi.

Masatoshi Goto; Keisuke Ekino; Kensuke Furukawa

Collaboration


Dive into the Keisuke Ekino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michio Ohba

Kyushu Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge