Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keisuke Ishihara is active.

Publication


Featured researches published by Keisuke Ishihara.


Cell | 2013

Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2

Sabine Petry; Aaron C. Groen; Keisuke Ishihara; Timothy J. Mitchison; Ronald D. Vale

The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence has suggested that microtubules also might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires γ-tubulin and augmin and is stimulated by factors previously implicated in chromatin-stimulated nucleation, guanosine triphosphate(GTP)-bound Ran and its effector, TPX2. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance.


Cytoskeleton | 2012

Growth, interaction and positioning of microtubule asters in extremely large vertebrate embryo cells

Timothy J. Mitchison; Martin Wühr; Phuong A. Nguyen; Keisuke Ishihara; Aaron C. Groen; Christine M. Field

Ray Rappaport spent many years studying microtubule asters, and how they induce cleavage furrows. Here, we review recent progress on aster structure and dynamics in zygotes and early blastomeres of Xenopus laevis and Zebrafish, where cells are extremely large. Mitotic and interphase asters differ markedly in size, and only interphase asters span the cell. Growth of interphase asters occurs by a mechanism that allows microtubule density at the aster periphery to remain approximately constant as radius increases. We discuss models for aster growth, and favor a branching nucleation process. Neighboring asters that grow into each other interact to block further growth at the shared boundary. We compare the morphology of interaction zones formed between pairs of asters that grow out from the poles of the same mitotic spindle (sister asters) and between pairs not related by mitosis (non‐sister asters) that meet following polyspermic fertilization. We argue growing asters recognize each other by interaction between antiparallel microtubules at the mutual boundary, and discuss models for molecular organization of interaction zones. Finally, we discuss models for how asters, and the centrosomes within them, are positioned by dynein‐mediated pulling forces so as to generate stereotyped cleavage patterns. Studying these problems in extremely large cells is starting to reveal how general principles of cell organization scale with cell size.


Science | 2014

Spatial organization of cytokinesis signaling reconstituted in a cell-free system

Phuong A. Nguyen; Aaron C. Groen; Martin Loose; Keisuke Ishihara; Martin Wühr; Christine M. Field; Timothy J. Mitchison

During animal cell division, the cleavage furrow is positioned by microtubules that signal to the actin cortex at the cell midplane. We developed a cell-free system to recapitulate cytokinesis signaling using cytoplasmic extract from Xenopus eggs. Microtubules grew out as asters from artificial centrosomes and met to organize antiparallel overlap zones. These zones blocked the interpenetration of neighboring asters and recruited cytokinesis midzone proteins, including the chromosomal passenger complex (CPC) and centralspindlin. The CPC was transported to overlap zones, which required two motor proteins, Kif4A and a Kif20A paralog. Using supported lipid bilayers to mimic the plasma membrane, we observed the recruitment of cleavage furrow markers, including an active RhoA reporter, at microtubule overlaps. This system opens further approaches to understanding the biophysics of cytokinesis signaling. Reconstitution of signaling from microtubules to the plasma membrane and transport of cleavage furrow–inducing signals are described. Reconstituting the right stuff for division Cytokinesis, when two daughter cells are physically separated from one another, is the final stage of cell division. How dividing cells assemble a cleavage furrow ready for cytokinesis has long interested cell biologists. A major stumbling block to probing the underlying mechanisms has been the lack of a cell-free and fully controllable experimental system. Now, Nguyen et al. have reconstituted cytokinesis organization outside living cells, using a system derived from frog eggs. In the cell-free system, the cell cycle state is “frozen,” and the spatial scale is unusually large. The authors examined the biophysics involved in signaling during cytokinesis over many minutes and many micrometers using powerful imaging techniques. Science, this issue p. 244


Current Biology | 2015

The Nuclear Proteome of a Vertebrate

Martin Wühr; Leonid Peshkin; Graeme C. McAlister; Matthew Sonnett; Keisuke Ishihara; Aaron C. Groen; Marc Presler; Brian K. Erickson; Timothy J. Mitchison; Marc W. Kirschner; Steven P. Gygi

The composition of the nucleoplasm determines the behavior of key processes such as transcription, yet there is still no reliable and quantitative resource of nuclear proteins. Furthermore, it is still unclear how the distinct nuclear and cytoplasmic compositions are maintained. To describe the nuclear proteome quantitatively, we isolated the large nuclei of frog oocytes via microdissection and measured the nucleocytoplasmic partitioning of ∼9,000 proteins by mass spectrometry. Most proteins localize entirely to either nucleus or cytoplasm; only ∼17% partition equally. A proteins native size in a complex, but not polypeptide molecular weight, is predictive of localization: partitioned proteins exhibit native sizes larger than ∼100 kDa, whereas natively smaller proteins are equidistributed. To evaluate the role of nuclear export in maintaining localization, we inhibited Exportin 1. This resulted in the expected re-localization of proteins toward the nucleus, but only 3% of the proteome was affected. Thus, complex assembly and passive retention, rather than continuous active transport, is the dominant mechanism for the maintenance of nuclear and cytoplasmic proteomes.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Microtubule nucleation remote from centrosomes may explain how asters span large cells

Keisuke Ishihara; Phuong A. Nguyen; Aaron C. Groen; Christine M. Field; Timothy J. Mitchison

Significance How the cell cytoplasm is spatially organized is of fundamental interest. In ordinary animal cells the cytoplasm is organized by a radial array of microtubules, called an aster. Aster microtubules are nucleated by the centrosome and elongate to the periphery. We investigated how asters grow in an extremely large cell, the frog egg, using microscopy of an extract system. Asters were initially nucleated at centrosomes, but then additional microtubules nucleated far from the centrosome, apparently stimulated by preexisting microtubules. The resulting growth process allows asters to scale to the size of huge egg cells while maintaining a high density of microtubules at the periphery. Microtubule-stimulated microtubule nucleation might be a general principle for organizing large cells. A major challenge in cell biology is to understand how nanometer-sized molecules can organize micrometer-sized cells in space and time. One solution in many animal cells is a radial array of microtubules called an aster, which is nucleated by a central organizing center and spans the entire cytoplasm. Frog (here Xenopus laevis) embryos are more than 1 mm in diameter and divide with a defined geometry every 30 min. Like smaller cells, they are organized by asters, which grow, interact, and move to precisely position the cleavage planes. It has been unclear whether asters grow to fill the enormous egg by the same mechanism used in smaller somatic cells, or whether special mechanisms are required. We addressed this question by imaging growing asters in a cell-free system derived from eggs, where asters grew to hundreds of microns in diameter. By tracking marks on the lattice, we found that microtubules could slide outward, but this was not essential for rapid aster growth. Polymer treadmilling did not occur. By measuring the number and positions of microtubule ends over time, we found that most microtubules were nucleated away from the centrosome and that interphase egg cytoplasm supported spontaneous nucleation after a time lag. We propose that aster growth is initiated by centrosomes but that asters grow by propagating a wave of microtubule nucleation stimulated by the presence of preexisting microtubules.


eLife | 2016

Physical basis of large microtubule aster growth

Keisuke Ishihara; Kirill S. Korolev; Timothy J. Mitchison

Microtubule asters - radial arrays of microtubules organized by centrosomes - play a fundamental role in the spatial coordination of animal cells. The standard model of aster growth assumes a fixed number of microtubules originating from the centrosomes. However, aster morphology in this model does not scale with cell size, and we recently found evidence for non-centrosomal microtubule nucleation. Here, we combine autocatalytic nucleation and polymerization dynamics to develop a biophysical model of aster growth. Our model predicts that asters expand as traveling waves and recapitulates all major aspects of aster growth. With increasing nucleation rate, the model predicts an explosive transition from stationary to growing asters with a discontinuous jump of the aster velocity to a nonzero value. Experiments in frog egg extract confirm the main theoretical predictions. Our results suggest that asters observed in large fish and amphibian eggs are a meshwork of short, unstable microtubules maintained by autocatalytic nucleation and provide a paradigm for the assembly of robust and evolvable polymer networks. DOI: http://dx.doi.org/10.7554/eLife.19145.001


Philosophical Transactions of the Royal Society B | 2014

Organization of early frog embryos by chemical waves emanating from centrosomes

Keisuke Ishihara; Phuong A. Nguyen; Martin Wühr; Aaron C. Groen; Christine M. Field; Timothy J. Mitchison

The large cells in early vertebrate development face an extreme physical challenge in organizing their cytoplasm. For example, amphibian embryos have to divide cytoplasm that spans hundreds of micrometres every 30 min according to a precise geometry, a remarkable accomplishment given the extreme difference between molecular and cellular scales in this system. How do the biochemical reactions occurring at the molecular scale lead to this emergent behaviour of the cell as a whole? Based on recent findings, we propose that the centrosome plays a crucial role by initiating two autocatalytic reactions that travel across the large cytoplasm as chemical waves. Waves of mitotic entry and exit propagate out from centrosomes using the Cdk1 oscillator to coordinate the timing of cell division. Waves of microtubule-stimulated microtubule nucleation propagate out to assemble large asters that position spindles for the following mitosis and establish cleavage plane geometry. By initiating these chemical waves, the centrosome rapidly organizes the large cytoplasm during the short embryonic cell cycle, which would be impossible using more conventional mechanisms such as diffusion or nucleation by structural templating. Large embryo cells provide valuable insights to how cells control chemical waves, which may be a general principle for cytoplasmic organization.


Chaos | 2013

Context-dependent transcriptional interpretation of mitogen activated protein kinase signaling in the Drosophila embryo

Yoosik Kim; Antonina Iagovitina; Keisuke Ishihara; Kate M. Fitzgerald; Bart Deplancke; Dmitri Papatsenko; Stanislav Y. Shvartsman

Terminal regions of the Drosophila embryo are patterned by the localized activation of Mitogen Activated Protein Kinase (MAPK), which induces zygotic genes through relief of their repression by transcriptional repressor Capicua. The levels of MAPK activation at the anterior and posterior termini are close to each other, but the expression patterns of MAPK-target genes, such as zerknüllt (zen) and tailless (tll), display strong anterior-posterior (AP) asymmetry. This region-specific response to MAPK activation provides a clear example of context-dependent interpretation of inductive signaling, a common developmental effect that remains poorly understood. In the past, the AP asymmetry of zen expression was attributed to a mechanism that depends on MAPK substrate competition. We present data suggesting that the asymmetric expression of tll is generated by a different mechanism, based on feedforward control and multiple enhancers of the tll gene. A simple mathematical model of this mechanism correctly predicts how the wild-type expression pattern of tll changes in mutants affecting the anterior, dorsoventral, and terminal patterning systems and some of their direct targets.


Archive | 2017

Reconstitution of a Patterned Neural Tube from Single Mouse Embryonic Stem Cells

Keisuke Ishihara; Adrian Ranga; Matthias P. Lutolf; Elly M. Tanaka; Andrea Meinhardt

The recapitulation of tissue development and patterning in three-dimensional (3D) culture is an important dimension of stem cell research. Here, we describe a 3D culture protocol in which single mouse ES cells embedded in Matrigel under neural induction conditions clonally form a lumen containing, oval-shaped epithelial structure within 3 days. By Day 7 an apicobasally polarized neuroepithelium with uniformly dorsal cell identity forms. Treatment with retinoic acid at Day 2 results in posteriorization and self-organization of dorsal-ventral neural tube patterning. Neural tube organoid growth is also supported by pure laminin gels as well as poly(ethylene glycol) (PEG)-based artificial extracellular matrix hydrogels, which can be fine-tuned for key microenvironment characteristics. The rapid generation of a simple, patterned tissue in well-defined culture conditions makes the neural tube organoid a tractable model for studying neural stem cell self-organization.


Current Biology | 2012

Pronuclear Migration: No Attachment? No Union, but a Futile Cycle!

Phuong A. Nguyen; Keisuke Ishihara; Martin Wühr; Timothy J. Mitchison

How do pronuclei migrate towards each other? The zebrafish futile cycle gene is shown to encode a maternally expressed membrane protein required for nuclear attachment and migration along the sperm aster.

Collaboration


Dive into the Keisuke Ishihara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine M. Field

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge