Martin Wühr
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Wühr.
Cell | 2015
Edward L. Huttlin; Lily Ting; Raphael J. Bruckner; Fana Gebreab; Melanie P. Gygi; John Szpyt; Stanley Tam; Gabriela Zarraga; Greg Colby; Kurt Baltier; Rui Dong; Virginia Guarani; Laura Pontano Vaites; Alban Ordureau; Ramin Rad; Brian K. Erickson; Martin Wühr; Joel M. Chick; Bo Zhai; Deepak Kolippakkam; Julian Mintseris; Robert A. Obar; Tim Harris; Spyros Artavanis-Tsakonas; Mathew E. Sowa; Pietro De Camilli; Joao A. Paulo; J. Wade Harper; Steven P. Gygi
Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors.
Analytical Chemistry | 2014
Graeme C. McAlister; David Nusinow; Mark P. Jedrychowski; Martin Wühr; Edward L. Huttlin; Brian K. Erickson; Ramin Rad; Wilhelm Haas; Steven P. Gygi
Multiplexed quantitation via isobaric chemical tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantitation (iTRAQ)) has the potential to revolutionize quantitative proteomics. However, until recently the utility of these tags was questionable due to reporter ion ratio distortion resulting from fragmentation of coisolated interfering species. These interfering signals can be negated through additional gas-phase manipulations (e.g., MS/MS/MS (MS3) and proton-transfer reactions (PTR)). These methods, however, have a significant sensitivity penalty. Using isolation waveforms with multiple frequency notches (i.e., synchronous precursor selection, SPS), we coisolated and cofragmented multiple MS2 fragment ions, thereby increasing the number of reporter ions in the MS3 spectrum 10-fold over the standard MS3 method (i.e., MultiNotch MS3). By increasing the reporter ion signals, this method improves the dynamic range of reporter ion quantitation, reduces reporter ion signal variance, and ultimately produces more high-quality quantitative measurements. To demonstrate utility, we analyzed biological triplicates of eight colon cancer cell lines using the MultiNotch MS3 method. Across all the replicates we quantified 8 378 proteins in union and 6 168 proteins in common. Taking into account that each of these quantified proteins contains eight distinct cell-line measurements, this data set encompasses 174 704 quantitative ratios each measured in triplicate across the biological replicates. Herein, we demonstrate that the MultiNotch MS3 method uniquely combines multiplexing capacity with quantitative sensitivity and accuracy, drastically increasing the informational value obtainable from proteomic experiments.
Current Biology | 2008
Martin Wühr; Yao Chen; Sophie Dumont; Aaron C. Groen; Daniel J. Needleman; Adrian Salic; Timothy J. Mitchison
Size specification of macromolecular assemblies in the cytoplasm is poorly understood [1]. In principle, assemblies could scale with cell size or use intrinsic mechanisms. For the mitotic spindle, scaling with cell size is expected, because the function of this assembly is to physically move sister chromatids into the center of nascent daughter cells. Eggs of Xenopus laevis are among the largest cells known that cleave completely during cell division. Cell length in this organism changes by two orders of magnitude ( approximately 1200 microm to approximately 12 microm) while it develops from a fertilized egg into a tadpole [2]. We wondered whether, and how, mitotic spindle length and morphology adapt to function at these different length scales. Here, we show that spindle length increases with cell length in small cells, but in very large cells spindle length approaches an upper limit of approximately 60 microm. Further evidence for an upper limit to spindle length comes from an embryonic extract system that recapitulates mitotic spindle assembly in a test tube. We conclude that early mitotic spindle length in Xenopus laevis is uncoupled from cell length, reaching an upper bound determined by mechanisms that are intrinsic to the spindle.
Current Biology | 2010
Martin Wühr; Edwin S. Tan; Sandra K. Parker; H. William Detrich; Timothy J. Mitchison
Current models for cleavage plane determination propose that metaphase spindles are positioned and oriented by interactions of their astral microtubules with the cellular cortex, followed by cleavage in the plane of the metaphase plate [1, 2]. We show that in early frog and fish embryos, where cells are unusually large, astral microtubules in metaphase are too short to position and orient the spindle. Rather, the preceding interphase aster centers and orients a pair of centrosomes prior to nuclear envelope breakdown, and the spindle assembles between these prepositioned centrosomes. Interphase asters center and orient centrosomes with dynein-mediated pulling forces. These forces act before astral microtubules contact the cortex; thus, dynein must pull from sites in the cytoplasm, not the cell cortex as is usually proposed for smaller cells. Aster shape is determined by interactions of the expanding periphery with the cell cortex or with an interaction zone that forms between sister-asters in telophase. We propose a model to explain cleavage plane geometry in which the length of astral microtubules is limited by interaction with these boundaries, causing length asymmetries. Dynein anchored in the cytoplasm then generates length-dependent pulling forces, which move and orient centrosomes.
Developmental Cell | 2015
Leonid Peshkin; Martin Wühr; Esther J. Pearl; Wilhelm Haas; Robert M. Freeman; John C. Gerhart; Allon M. Klein; Marko E. Horb; Steven P. Gygi; Marc W. Kirschner
A biochemical explanation of development from the fertilized egg to the adult requires an understanding of the proteins and RNAs expressed over time during embryogenesis. We present a comprehensive characterization of protein and mRNA dynamics across early development in Xenopus. Surprisingly, we find that most protein levels change little and duplicated genes are expressed similarly. While the correlation between protein and mRNA levels is poor, a mass action kinetics model parameterized using protein synthesis and degradation rates regresses protein dynamics to RNA dynamics, corrected for initial protein concentration. This study provides detailed data for absolute levels of ∼10,000 proteins and ∼28,000 transcripts via a convenient web portal, a rich resource for developmental biologists. It underscores the lasting impact of maternal dowry, finds surprisingly few cases where degradation alone drives a change in protein level, and highlights the importance of transcription in shaping the dynamics of the embryonic proteome.
Cell Cycle | 2009
Martin Wühr; Sophie Dumont; Aaron C. Groen; Daniel J. Needleman; Timothy J. Mitchison
Microtubules play a central role in centering the nucleus or mitotic in eukaryotic cells. However, despite common use of microtubules for centering, physical mechanisms can vary greatly, and depend on cell size and cell type. In the small fission yeast cells, the nucleus can be centered by pushing forces that are generated when growing microtubules hit the cell boundary. This mechanism may not be possible in larger cells, because the compressive force that microtubules can sustain are limited by buckling, so maximal force decreases with microtubule length. In a well-studied intermediate sized cell, the C. elegans fertilized egg, centrosomes are centered by cortex-attached motors that pull on microtubules. This mechanism is widely assumed to be general for larger cells. However, re-evaluation of classic experiments in a very large cell, the fertilized amphibian egg, argues against such generality. In these large eggs, movement of asters away from a part of the cell boundary that they are touching cannot be mediated by cortical pulling, because the astral microtubules are too short to reach the opposite cell boundary. A century ago, Herlant and Brachet discovered that multiple asters within a single egg center relative to the cell boundary, but also relative to each other. Here, we summarize current understanding of microtubule organization during the first cell cycle in a fertilized Xenopus egg, discuss how microtubule asters move towards the center of this very large cell, and how multiple asters shape and position themselves relative to each other.
Analytical Chemistry | 2012
Martin Wühr; Wilhelm Haas; Graeme C. McAlister; Leonid Peshkin; Ramin Rad; Marc W. Kirschner; Steven P. Gygi
Isobaric labeling strategies, such as isobaric tags for relative and absolute quantitation (iTRAQ) or tandem mass tags (TMT), have promised to dramatically increase the power of quantitative proteomics. However, when applied to complex mixtures, both the accuracy and precision are undermined by interfering peptide ions that coisolate and cofragment with the target peptide. Additional gas-phase isolation steps, such as proton-transfer ion-ion reactions (PTR) or higher-order MS3 scans, can almost completely eliminate this problem. Unfortunately, these methods come at the expense of decreased acquisition speed and sensitivity. Here we present a method that allows accurate quantification of TMT-labeled peptides at the MS2 level without additional ion purification. Quantification is based on the fragment ion cluster that carries most of the TMT mass balance. In contrast to the use of low m/z reporter ions, the localization of these complement TMT (TMT(C)) ions in the spectrum is precursor-specific; coeluting peptides do not generally affect the measurement of the TMT(C) ion cluster of interest. Unlike the PTR or MS3 strategies, this method can be implemented on a wide range of high-resolution mass spectrometers like the quadrupole Orbitrap instruments (QExactive). A current limitation of the method is that the efficiency of TMT(C) ion formation is affected by both peptide sequence and peptide ion charge state; we discuss potential routes to overcome this problem. Finally, we show that the complement reporter ion approach allows parallelization of multiplexed quantification and therefore holds the potential to multiply the number of distinct peptides that can be quantified in a given time frame.
Nature Cell Biology | 2006
Ingo H. Gorr; A. Reis; Dominik Boos; Martin Wühr; Suzanne Madgwick; Keith T. Jones; Olaf Stemmann
Separase not only triggers anaphase of meiosis I by proteolytic cleavage of cohesin on chromosome arms, but in vitro vertebrate separase also acts as a direct inhibitor of cyclin-dependent kinase 1 (Cdk1) on liberation from the inhibitory protein, securin. Blocking separase–Cdk1 complex formation by microinjection of anti-separase antibodies prevents polar-body extrusion in vertebrate oocytes. Importantly, proper meiotic maturation is rescued by chemical inhibition of Cdk1 or expression of Cdk1-binding separase fragments lacking cohesin-cleaving activity.
Cytoskeleton | 2012
Timothy J. Mitchison; Martin Wühr; Phuong A. Nguyen; Keisuke Ishihara; Aaron C. Groen; Christine M. Field
Ray Rappaport spent many years studying microtubule asters, and how they induce cleavage furrows. Here, we review recent progress on aster structure and dynamics in zygotes and early blastomeres of Xenopus laevis and Zebrafish, where cells are extremely large. Mitotic and interphase asters differ markedly in size, and only interphase asters span the cell. Growth of interphase asters occurs by a mechanism that allows microtubule density at the aster periphery to remain approximately constant as radius increases. We discuss models for aster growth, and favor a branching nucleation process. Neighboring asters that grow into each other interact to block further growth at the shared boundary. We compare the morphology of interaction zones formed between pairs of asters that grow out from the poles of the same mitotic spindle (sister asters) and between pairs not related by mitosis (non‐sister asters) that meet following polyspermic fertilization. We argue growing asters recognize each other by interaction between antiparallel microtubules at the mutual boundary, and discuss models for molecular organization of interaction zones. Finally, we discuss models for how asters, and the centrosomes within them, are positioned by dynein‐mediated pulling forces so as to generate stereotyped cleavage patterns. Studying these problems in extremely large cells is starting to reveal how general principles of cell organization scale with cell size.
Science | 2014
Phuong A. Nguyen; Aaron C. Groen; Martin Loose; Keisuke Ishihara; Martin Wühr; Christine M. Field; Timothy J. Mitchison
During animal cell division, the cleavage furrow is positioned by microtubules that signal to the actin cortex at the cell midplane. We developed a cell-free system to recapitulate cytokinesis signaling using cytoplasmic extract from Xenopus eggs. Microtubules grew out as asters from artificial centrosomes and met to organize antiparallel overlap zones. These zones blocked the interpenetration of neighboring asters and recruited cytokinesis midzone proteins, including the chromosomal passenger complex (CPC) and centralspindlin. The CPC was transported to overlap zones, which required two motor proteins, Kif4A and a Kif20A paralog. Using supported lipid bilayers to mimic the plasma membrane, we observed the recruitment of cleavage furrow markers, including an active RhoA reporter, at microtubule overlaps. This system opens further approaches to understanding the biophysics of cytokinesis signaling. Reconstitution of signaling from microtubules to the plasma membrane and transport of cleavage furrow–inducing signals are described. Reconstituting the right stuff for division Cytokinesis, when two daughter cells are physically separated from one another, is the final stage of cell division. How dividing cells assemble a cleavage furrow ready for cytokinesis has long interested cell biologists. A major stumbling block to probing the underlying mechanisms has been the lack of a cell-free and fully controllable experimental system. Now, Nguyen et al. have reconstituted cytokinesis organization outside living cells, using a system derived from frog eggs. In the cell-free system, the cell cycle state is “frozen,” and the spatial scale is unusually large. The authors examined the biophysics involved in signaling during cytokinesis over many minutes and many micrometers using powerful imaging techniques. Science, this issue p. 244