Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keita Suwabe is active.

Publication


Featured researches published by Keita Suwabe.


Genetics | 2006

Simple Sequence Repeat-Based Comparative Genomics Between Brassica rapa and Arabidopsis thaliana: The Genetic Origin of Clubroot Resistance

Keita Suwabe; Hikaru Tsukazaki; Hiroyuki Iketani; Katsunori Hatakeyama; Masatoshi Kondo; Miyuki Fujimura; Tsukasa Nunome; Hiroyuki Fukuoka; Masashi Hirai; Satoru Matsumoto

An SSR-based linkage map was constructed in Brassica rapa. It includes 113 SSR, 87 RFLP, and 62 RAPD markers. It consists of 10 linkage groups with a total distance of 1005.5 cM and an average distance of 3.7 cM. SSRs are distributed throughout the linkage groups at an average of 8.7 cM. Synteny between B. rapa and a model plant, Arabidopsis thaliana, was analyzed. A number of small genomic segments of A. thaliana were scattered throughout an entire B. rapa linkage map. This points out the complex genomic rearrangements during the course of evolution in Cruciferae. A 282.5-cM region in the B. rapa map was in synteny with A. thaliana. Of the three QTL (Crr1, Crr2, and Crr4) for clubroot resistance identified, synteny analysis revealed that two major QTL regions, Crr1 and Crr2, overlapped in a small region of Arabidopsis chromosome 4. This region belongs to one of the disease-resistance gene clusters (MRCs) in the A. thaliana genome. These results suggest that the resistance genes for clubroot originated from a member of the MRCs in a common ancestral genome and subsequently were distributed to the different regions they now inhabit in the process of evolution.


Theoretical and Applied Genetics | 2002

Isolation and characterization of microsatellites in Brassica rapa L.

Keita Suwabe; Hiroyuki Iketani; Tsukasa Nunome; T. Kage; Masashi Hirai

Abstract.We report here the isolation and characterization of microsatellites, or simple sequence repeats (SSRs), in Brassica rapa. The size-fractionated genomic library was screened with (GA)15 and (GT)15 oligonucleotide probes. A total of 58 clones were identified as having the microsatellite repeats, and specific primer pairs were designed for 38 microsatellite loci. All primer pairs, except two, amplified fragments having the sizes expected from the sequences. Of the 36 primer pairs, 35 amplified polymorphic loci in 19 cultivars of B. rapa, while monomorphism was observed in only one primer pair. A total of 232 alleles was identified by the 36 primer pairs in 19 cultivars of B. rapa, and these primer pairs were examined also in nine Brassicaceae species. Most of the 36 primer pairs amplified the loci in the Brassicaceae species. Segregation of the microsatellites was studied in an F2 population from a cross of doubled-haploid lines DH27 × G309. The microsatellites segregated in a co-dominant manner. These results indicate that the microsatellites isolated in this study were highly informative and could be useful tools for genetic analysis in B. rapa and other related species.


Plant and Cell Physiology | 2008

Various spatiotemporal expression profiles of anther-expressed genes in rice.

Tokunori Hobo; Keita Suwabe; Koichiro Aya; Go Suzuki; Kentaro Yano; Takeshi Ishimizu; Masahiro Fujita; Shunsuke Kikuchi; Kazuki Hamada; Masumi Miyano; Tomoaki Fujioka; Fumi Kaneko; Tomohiko Kazama; Yoko Mizuta; Hirokazu Takahashi; Katsuhiro Shiono; Mikio Nakazono; Nobuhiro Tsutsumi; Yoshiaki Nagamura; Nori Kurata; Masao Watanabe; Makoto Matsuoka

The male gametophyte and tapetum play different roles during anther development although they are differentiated from the same cell lineage, the L2 layer. Until now, it has not been possible to delineate their transcriptomes due to technical difficulties in separating the two cell types. In the present study, we characterized the separated transcriptomes of the rice microspore/pollen and tapetum using laser microdissection (LM)-mediated microarray. Spatiotemporal expression patterns of 28,141 anther-expressed genes were classified into 20 clusters, which contained 3,468 (12.3%) anther-enriched genes. In some clusters, synchronous gene expression in the microspore and tapetum at the same developmental stage was observed as a novel characteristic of the anther transcriptome. Noteworthy expression patterns are discussed in connection with gene ontology (GO) categories and gene annotations, which are related to important biological events in anther development, such as pollen maturation, pollen germination, pollen tube elongation and pollen wall formation.


Plant and Cell Physiology | 2008

Separated Transcriptomes of Male Gametophyte and Tapetum in Rice: Validity of a Laser Microdissection (LM) Microarray

Keita Suwabe; Go Suzuki; Hirokazu Takahashi; Katsuhiro Shiono; Makoto Endo; Kentaro Yano; Masahiro Fujita; Hiromi Masuko; Hiroshi Saito; Tomoaki Fujioka; Fumi Kaneko; Tomohiko Kazama; Yoko Mizuta; Makiko Kawagishi-Kobayashi; Nobuhiro Tsutsumi; Nori Kurata; Mikio Nakazono; Masao Watanabe

In flowering plants, the male gametophyte, the pollen, develops in the anther. Complex patterns of gene expression in both the gametophytic and sporophytic tissues of the anther regulate this process. The gene expression profiles of the microspore/pollen and the sporophytic tapetum are of particular interest. In this study, a microarray technique combined with laser microdissection (44K LM-microarray) was developed and used to characterize separately the transcriptomes of the microspore/pollen and tapetum in rice. Expression profiles of 11 known tapetum specific-genes were consistent with previous reports. Based on their spatial and temporal expression patterns, 140 genes which had been previously defined as anther specific were further classified as male gametophyte specific (71 genes, 51%), tapetum-specific (seven genes, 5%) or expressed in both male gametophyte and tapetum (62 genes, 44%). These results indicate that the 44K LM-microarray is a reliable tool to analyze the gene expression profiles of two important cell types in the anther, the microspore/pollen and tapetum.


Nature | 2010

Evolution of self-compatibility in Arabidopsis by a mutation in the male specificity gene

Takashi Tsuchimatsu; Keita Suwabe; Rie Shimizu-Inatsugi; Sachiyo Isokawa; Pavlos Pavlidis; Thomas Städler; Go Suzuki; Seiji Takayama; Masao Watanabe; Kentaro K. Shimizu

Ever since Darwin’s pioneering research, the evolution of self-fertilisation (selfing) has been regarded as one of the most prevalent evolutionary transitions in flowering plants. A major mechanism to prevent selfing is the self-incompatibility (SI) recognition system, which consists of male and female specificity genes at the S-locus and SI modifier genes. Under conditions that favour selfing, mutations disabling the male recognition component are predicted to enjoy a relative advantage over those disabling the female component, because male mutations would increase through both pollen and seeds whereas female mutations would increase only through seeds. Despite many studies on the genetic basis of loss of SI in the predominantly selfing plant Arabidopsis thaliana, it remains unknown whether selfing arose through mutations in the female specificity gene (S-receptor kinase, SRK), male specificity gene (S-locus cysteine-rich protein, SCR; also known as S-locus protein 11, SP11) or modifier genes, and whether any of them rose to high frequency across large geographic regions. Here we report that a disruptive 213-base-pair (bp) inversion in the SCR gene (or its derivative haplotypes with deletions encompassing the entire SCR-A and a large portion of SRK-A) is found in 95% of European accessions, which contrasts with the genome-wide pattern of polymorphism in European A. thaliana. Importantly, interspecific crossings using Arabidopsis halleri as a pollen donor reveal that some A. thaliana accessions, including Wei-1, retain the female SI reaction, suggesting that all female components including SRK are still functional. Moreover, when the 213-bp inversion in SCR was inverted and expressed in transgenic Wei-1 plants, the functional SCR restored the SI reaction. The inversion within SCR is the first mutation disrupting SI shown to be nearly fixed in geographically wide samples, and its prevalence is consistent with theoretical predictions regarding the evolutionary advantage of mutations in male components.


Theoretical and Applied Genetics | 2004

A novel locus for clubroot resistance in Brassica rapa and its linkage markers

Masashi Hirai; T. Harada; Nakao Kubo; M. Tsukada; Keita Suwabe; Satoru Matsumoto

An inbred turnip (Brassica rapa syn. campestris) line, N-WMR-3, which carries the trait of clubroot resistance (CR) from a European turnip, Milan White, was crossed with a clubroot-susceptible doubled haploid line, A9709. A segregating F3 population was obtained by single-seed descent of F2 plants and used for a genetic analysis. Segregation of CR in the F3 population suggested that CR is controlled by a major gene. Two RAPD markers, OPC11-1 and OPC11-2, were obtained as candidates of linkage markers by bulked segregant analysis. These were converted to sequence-tagged site markers, by cloning and sequencing of the polymorphic bands, and named OPC11-1S and OPC11-2S, respectively. The specific primer pairs for OPC11-1S amplified a clear dominant band, while the primer pairs for OPC11-2S resulted in co-dominant bands. Frequency distributions and statistical analyses indicate the presence of a major dominant CR gene linked to these two markers. The present marker for CR was independent of the previously found CR loci, Crr1 andCrr2. Genotypic distribution and statistical analyses did not show any evidence of CR alleles on Crr1 andCrr2 loci in N-WMR-3. The present study clearly demonstrates that B. rapa has at least three CR loci. Therefore, the new CR locus was named Crr3. The present locus may be useful in breeding CR Chinese cabbage cultivars to overcome the decay of present CR cultivars.


Plant and Cell Physiology | 2011

OryzaExpress : An Integrated Database of Gene Expression Networks and Omics Annotations in Rice

Kazuki Hamada; Kohei Hongo; Keita Suwabe; Akifumi Shimizu; Taishi Nagayama; Reina Abe; Shunsuke Kikuchi; Naoki Yamamoto; Takaaki Fujii; Koji Yokoyama; Hiroko Tsuchida; Kazumi Sano; Takako Mochizuki; Nobuhiko Oki; Youko Horiuchi; Masahiro Fujita; Masao Watanabe; Makoto Matsuoka; Nori Kurata; Kentaro Yano

Similarity of gene expression profiles provides important clues for understanding the biological functions of genes, biological processes and metabolic pathways related to genes. A gene expression network (GEN) is an ideal choice to grasp such expression profile similarities among genes simultaneously. For GEN construction, the Pearson correlation coefficient (PCC) has been widely used as an index to evaluate the similarities of expression profiles for gene pairs. However, calculation of PCCs for all gene pairs requires large amounts of both time and computer resources. Based on correspondence analysis, we developed a new method for GEN construction, which takes minimal time even for large-scale expression data with general computational circumstances. Moreover, our method requires no prior parameters to remove sample redundancies in the data set. Using the new method, we constructed rice GENs from large-scale microarray data stored in a public database. We then collected and integrated various principal rice omics annotations in public and distinct databases. The integrated information contains annotations of genome, transcriptome and metabolic pathways. We thus developed the integrated database OryzaExpress for browsing GENs with an interactive and graphical viewer and principal omics annotations (http://riceball.lab.nig.ac.jp/oryzaexpress/). With integration of Arabidopsis GEN data from ATTED-II, OryzaExpress also allows us to compare GENs between rice and Arabidopsis. Thus, OryzaExpress is a comprehensive rice database that exploits powerful omics approaches from all perspectives in plant science and leads to systems biology.


Plant and Cell Physiology | 2010

UDP-Glucose Pyrophosphorylase is Rate Limiting in Vegetative and Reproductive Phases in Arabidopsis thaliana

Jong-In Park; Takeshi Ishimizu; Keita Suwabe; Keisuke Sudo; Hiromi Masuko; Hirokazu Hakozaki; Ill-Sup Nou; Go Suzuki; Masao Watanabe

UDP-glucose pyrophosphorylase (UGPase) is an important enzyme in the metabolism of UDP-glucose, a precursor for the synthesis of carbohydrate cell wall components, such as cellulose and callose. The Arabidopsis thaliana genome contains two putative genes encoding UGPase, AtUGP1 and AtUGP2. These genes are expressed in all organs. In order to determine the role of UGPase in vegetative and reproductive organs, we employed a reverse genetic approach using the T-DNA insertion mutants, atugp1 and atugp2. Despite a significant decrease in UGPase activity in both the atugp1 and atugp2 single mutants, no decrease in normal growth and reproduction was observed. In contrast, the atugp1/atugp2 double mutant displayed drastic growth defects and male sterility. At the reproductive phase, in the anthers of atugp1/atugp2, pollen mother cells developed normally, but callose deposition around microspores was absent. Genes coding for enzymes at the subsequent steps in the cellulose and callose synthesis pathway were also down-regulated in the double mutant. Taken together, these results demonstrate that the AtUGP1 and AtUGP2 genes are functionally redundant and UGPase activity is essential for both vegetative and reproductive phases in Arabidopsis. Importantly, male fertility was not restored in the double knockout mutant by an application of external sucrose, whereas vegetative growth was comparable in size with that of the wild type. In contrast, an application of external UDP-glucose recovered male fertility in the double mutant, suggesting that control of UGPase in carbohydrate metabolism is different in the vegetative phase as compared with the reproductive phase in A. thaliana.


PLOS ONE | 2013

Identification and Characterization of Crr1a, a Gene for Resistance to Clubroot Disease (Plasmodiophora brassicae Woronin) in Brassica rapa L.

Katsunori Hatakeyama; Keita Suwabe; Rubens Norio Tomita; Takeyuki Kato; Tsukasa Nunome; Hiroyuki Fukuoka; Satoru Matsumoto

Clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae Woronin, is one of the most economically important diseases of Brassica crops in the world. Although many clubroot resistance (CR) loci have been identified through genetic analysis and QTL mapping, the molecular mechanisms of defense responses against P. brassicae remain unknown. Fine mapping of the Crr1 locus, which was originally identified as a single locus, revealed that it comprises two gene loci, Crr1a and Crr1b. Here we report the map-based cloning and characterization of Crr1a, which confers resistance to clubroot in Brassica rapa. Crr1aG004, cloned from the resistant line G004, encodes a Toll-Interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR) protein expressed in the stele and cortex of hypocotyl and roots, where secondary infection of the pathogen occurs, but not in root hairs, where primary infection occurs. Gain-of-function analysis proved that Crr1aG004 alone conferred resistance to isolate Ano-01 in susceptible Arabidopsis and B. rapa. In comparison, the susceptible allele Crr1aA9709 encodes a truncated NB-LRR protein, which lacked more than half of the TIR domain on account of the insertion of a solo-long terminal repeat (LTR) in exon 1 and included several substitutions and insertion-deletions in the LRR domain. This study provides a basis for further molecular analysis of defense mechanisms against P. brassicae and will contribute to the breeding of resistant cultivars of Brassica vegetables by marker-assisted selection. Data deposition The sequence reported in this paper has been deposited in the GenBank database (accession no. AB605024).


Genome | 2008

Integration of Brassica A genome genetic linkage map between Brassica napus and B. rapa

Keita Suwabe; Colin Morgan; Ian Bancroft

An integrated linkage map between B. napus and B. rapa was constructed based on a total of 44 common markers comprising 41 SSR (33 BRMS, 6 Saskatoon, and 2 BBSRC) and 3 SNP/indel markers. Between 3 and 7 common markers were mapped onto each of the linkage groups A1 to A10. The position and order of most common markers revealed a high level of colinearity between species, although two small regions on A4, A5, and A10 revealed apparent local inversions between them. These results indicate that the A genome of Brassica has retained a high degree of colinearity between species, despite each species having evolved independently after the integration of the A and C genomes in the amphidiploid state. Our results provide a genetic integration of the Brassica A genome between B. napus and B. rapa. As the analysis employed sequence-based molecular markers, the information will accelerate the exploitation of the B. rapa genome sequence for the improvement of oilseed rape.

Collaboration


Dive into the Keita Suwabe's collaboration.

Top Co-Authors

Avatar

Masao Watanabe

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Go Suzuki

Osaka Kyoiku University

View shared research outputs
Top Co-Authors

Avatar

Tsukasa Nunome

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masashi Hirai

Kyoto Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Fukuoka

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Satoru Matsumoto

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Seiji Takayama

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge