Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keith J. Gooch is active.

Publication


Featured researches published by Keith J. Gooch.


Tissue Engineering | 2002

Differential effects of growth factors on tissue-engineered cartilage.

Torsten Blunk; Alisha L. Sieminski; Keith J. Gooch; Donald L. Courter; Anthony P. Hollander; A. Menahem Nahir; Robert Langer; Gordana Vunjak-Novakovic; Lisa E. Freed

The effects of four regulatory factors on tissue-engineered cartilage were examined with specific focus on the ability to increase construct growth rate and concentrations of glycosaminoglycans (GAG) and collagen, the major extracellular matrix (ECM) components. Bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid (PGA) scaffolds and cultured in medium with or without supplemental insulin-like growth factor (IGF-I), interleukin-4 (IL-4), transforming growth factor-beta1 (TGF-beta1) or platelet-derived growth factor (PDGF). IGF-I, IL-4, and TGF-beta1 increased construct wet weights by 1.5-2.9-fold over 4 weeks of culture and increased amounts of cartilaginous ECM components. IGF-I (10-300 ng/mL) maintained wet weight fractions of GAG in constructs seeded at high cell density and increased by up to fivefold GAG fractions in constructs seeded at lower cell density. TGF-beta1 (30 ng/mL) increased wet weight fractions of total collagen by up to 1.4-fold while maintaining a high fraction of type II collagen (79 plus minus 11% of the total collagen). IL-4 (1-100 ng/mL) minimized the thickness of the GAG-depleted region at the construct surfaces. PDGF (1-100 ng/mL) decreased construct growth rate and ECM fractions. Different regulatory factors thus elicit significantly different chondrogenic responses and can be used to selectively control the growth rate and improve the composition of engineered cartilage.


Biomaterials | 2000

Biomaterial–microvasculature interactions

Alisha L. Sieminski; Keith J. Gooch

The utility of implanted sensors, drug-delivery systems, immunoisolation devices, engineered cells, and engineered tissues can be limited by inadequate transport to and from the circulation. As the primary function of the microvasculature is to facilitate transport between the circulation and the surrounding tissue, interactions between biomaterials and the microvasculature have been explored to understand the mechanisms controlling transport to implanted objects and ultimately improve it. This review surveys work on biomaterial-microvasculature interactions with a focus on the use of biomaterials to regulate the structure and function of the microvasculature. Several applications in which biomaterial-microvasculature interactions play a crucial role are briefly presented. These applications provide motivation and framework for a more in-depth discussion of general principles that appear to govern biomaterial-microvasculature interactions (i.e., the microarchitecture and physio-chemical properties of a biomaterial as well as the local biochemical environment).


Biotechnology and Bioengineering | 2001

Effects of mixing intensity on tissue-engineered cartilage.

Keith J. Gooch; J. H. Kwon; Torsten Blunk; Robert Langer; Lisa E. Freed; Gordana Vunjak-Novakovic

Mechanical forces regulate the structure and function of many tissues in vivo; recent results indicate that the mechanical environment can decisively influence the development of engineered tissues cultured in vitro. To investigate the effects of the hydrodynamic environment on tissue-engineered cartilage, primary bovine calf chondrocytes were seeded on fibrous polyglycolic acid meshes and cultured in spinner flasks either statically or at one of nine different turbulent mixing intensities. In medium from unmixed flasks, CO(2) accumulated and O(2) was depleted, whereas in medium from mixed flasks the concentrations of both gases approached their equilibrium values. Relative to constructs exposed to nonmixed conditions, constructs exposed to mixing contained higher fractions of collagen, synthesized and released more GAG, but contained lower fractions of GAG. Across the wide range of mixing intensities investigated, the presence or absence of mixing, but not the intensity of the mixing, was the primary determinant of the GAG and collagen content in the constructs. The all-or-none nature of these responses may provide insight into the mechanism(s) by which engineered cartilage perceives changes in its hydrodynamic environment and responds by modifying extracellular matrix production and release. 2001 John Wiley & Sons, Inc.


Journal of Biomechanics | 2009

Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D

Fitzroy J. Byfield; Rashmeet K. Reen; Tzu Pin Shentu; Irena Levitan; Keith J. Gooch

There is a growing appreciation of the profound effects that passive mechanical properties, especially the stiffness of the local environment, can have on cellular functions. Many experiments are conducted in a 2D geometry (i.e., cells grown on top of substrates of varying stiffness), which is a simplification of the 3D environment often experienced by cells in vivo. To determine how matrix dimensionality might modulate the effect of matrix stiffness on actin and cell stiffness, endothelial cells were cultured on top of and within substrates of various stiffnesses. Endothelial cells were cultured within compliant (1.0-1.5mg/ml, 124+/-8 to 202+/-27Pa) and stiff (3.0mg/ml, 502+/-48Pa) type-I collagen gels. Cells elongated and formed microvascular-like networks in both sets of gels as seen in previous studies. Cells in stiffer gels exhibited more pronounced stress fibers and approximately 1.5-fold greater staining for actin. As actin is a major determinant of a cells mechanical properties, we hypothesized that cells in stiff gels will themselves be stiffer. To test this hypothesis, cells were isolated from the gels and their stiffness was assessed using micropipette aspiration. Cells isolated from relatively compliant gels were 1.9-fold more compliant than cells isolated from relatively stiff gels (p<0.05). Similarly, cells cultured on top of 1700Pa polyacrylamide gels were 2.0-fold more compliant that those cultured on 9000Pa (p<0.05). These data demonstrate that extracellular substrate stiffness regulates endothelial stiffness in both three- and two-dimensional environments, though the range of stiffnesses that cells respond to vary significantly in different environments.


Tissue Engineering | 2002

Bone Morphogenetic Proteins-2, -12, and -13 Modulate in Vitro Development of Engineered Cartilage

Keith J. Gooch; Torsten Blunk; Donald L. Courter; Alisha L. Sieminski; Gordana Vunjak-Novakovic; Lisa E. Freed

Bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid (PGA) scaffolds and cultured in either control medium or medium supplemented with 1, 10, or 100 ng/mL of bone morphogenetic proteins (BMPs) BMP-2, BMP-12, or BMP-13. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks in vitro macroscopically and histologically resembled native cartilage. Addition of 100 ng/mL of BMP-2, BMP-12, or BMP-13 increased the total mass of the constructs relative to the controls by 121%, 80%, and 62%, respectively, which was accompanied by increases in the absolute amounts of collagen, glycosaminoglycans (GAG), and cells. The addition of 100 ng/mL of BMP-2, BMP-12, or BMP-13 increased the weight percentage of GAG in the constructs by 27%, 18%, and 15%, and decreased the weight percent of total collagen to 63%, 89%, and 83% of controls, respectively. BMP-2, but not BMP-12 or BMP-13 promoted chondrocyte hypertrophy. Taken together, these data suggest that BMP-2, BMP-12, and BMP-13 increase growth rate and modulate the composition of engineered cartilage and that 100 ng/mL of BMP-2 has the greatest effect. In addition, in vitro engineered cartilage provides a system for studying the effects of BMPs on chondrogenesis in a well-defined environment.


Journal of Lipid Research | 2006

OxLDL increases endothelial stiffness, force generation, and network formation

Fitzroy J. Byfield; Saloni Tikku; George H. Rothblat; Keith J. Gooch; Irena Levitan

This study investigates the effect of oxidatively modified low density lipoprotein (OxLDL) on the biomechanical properties of human aortic endothelial cells (HAECs). We show that treatment with OxLDL results in a 90% decrease in the membrane deformability of HAECs, as determined by micropipette aspiration. Furthermore, aortic endothelial cells freshly isolated from hypercholesterolemic pigs were significantly stiffer than cells isolated from healthy animals. Interestingly, OxLDL had no effect on membrane cholesterol of HAECs but caused the disappearance of a lipid raft marker, GM1, from the plasma membrane. Both an increase in membrane stiffness and a disappearance of GM1 were also observed in cells that were cholesterol-depleted by methyl-β-cyclodextrin. Additionally, OxLDL treatment of HAECs embedded within collagen gels resulted in increased gel contraction, indicating an increase in force generation by the cells. This increase in force generation correlated with an increased ability of HAECs to elongate and form networks in a three-dimensional environment. Increased force generation, elongation, and network formation were also observed in cholesterol-depleted cells. We suggest, therefore, that exposure to OxLDL results in the disruption or redistribution of lipid rafts, which in turn induces stiffening of the endothelium, an increase in endothelial force generation, and the potential for network formation.


Biophysical Journal | 2013

Fibers in the Extracellular Matrix Enable Long-Range Stress Transmission between Cells

Xiaoyue Ma; Maureen Schickel; Mark D. Stevenson; Alisha L. Sarang-Sieminski; Keith J. Gooch; Samir N. Ghadiali; Richard T. Hart

Cells can sense, signal, and organize via mechanical forces. The ability of cells to mechanically sense and respond to the presence of other cells over relatively long distances (e.g., ∼100 μm, or ∼10 cell-diameters) across extracellular matrix (ECM) has been attributed to the strain-hardening behavior of the ECM. In this study, we explore an alternative hypothesis: the fibrous nature of the ECM makes long-range stress transmission possible and provides an important mechanism for long-range cell-cell mechanical signaling. To test this hypothesis, confocal reflectance microscopy was used to develop image-based finite-element models of stress transmission within fibroblast-seeded collagen gels. Models that account for the gels fibrous nature were compared with homogenous linear-elastic and strain-hardening models to investigate the mechanisms of stress propagation. Experimentally, cells were observed to compact the collagen gel and align collagen fibers between neighboring cells within 24 h. Finite-element analysis revealed that stresses generated by a centripetally contracting cell boundary are concentrated in the relatively stiff ECM fibers and are propagated farther in a fibrous matrix as compared to homogeneous linear elastic or strain-hardening materials. These results support the hypothesis that ECM fibers, especially aligned ones, play an important role in long-range stress transmission.


Tissue Engineering | 2003

Tissue engineering of arteries by directed remodeling of intact arterial segments.

Valerie Clerin; Jason W. Nichol; Matus Petko; Richard J. Myung; J. William Gaynor; Keith J. Gooch

Traditional approaches to generating tissue-engineered arteries in vitro rely on expansion of cells in culture to seed appropriate scaffolds. In most envisioned applications, small autologous blood vessels would be harvested and used as a source for these cells. We propose that small autologous arteries, not the cells derived from them, may be an attractive starting point for engineered arteries. This approach capitalizes on the ability of intact arteries to grow and remodel in response to chronic changes in their mechanical environment. Carotid arteries from juvenile (approximately 30-kg) pigs were stretched longitudinally in an ex vivo perfusion system over 9 days. This resulted in a 40% increase in artery length at physiological longitudinal stress and a 20 +/- 3% increase when unstressed. Control arteries were perfused for 9 days ex vivo at their physiological loaded length. Control and elongated arteries displayed native appearance (macroscopic and histological), excellent viability (cellularity and mitochondrial activity), normal vasoactivity, and similar mechanical properties (ultimate stress and ultimate strain) as compared with freshly harvested arteries. Growth, as opposed to just redistribution of existing mass, contributed to elongation as evidenced by an increase in artery weight. Results on elongation of arteries from neonatal and adolescent pigs are also presented and discussed.


Tissue Engineering | 2002

Systemic delivery of human growth hormone using genetically modified tissue-engineered microvascular networks: prolonged delivery and endothelial survival with inclusion of nonendothelial cells.

Alisha L. Sieminski; Robert F. Padera; Torsten Blunk; Keith J. Gooch

Endothelial cells have the potential to provide efficient long-term delivery of therapeutic proteins to the circulation if a sufficient number of genetically modified endothelial cells can be incorporated into the host vasculature and if these cells persist for an adequate period of time. Here we describe the ability of nonendothelial cells to modulate the survival of implanted endothelial cells and their incorporation into host vasculature. Bovine aortic endothelial cells (BAECs) suspended in Matrigel and cultured in vitro remained spherical and decreased in number over time. Subcutaneous implantation of gels containing BAECs secreting human growth hormone (hGH) in mice initially resulted in detectable plasma hGH levels, which were undetectable after 2 weeks. When mixed with fibroblasts and suspended in Matrigel, hGH-secreting BAECs formed microvascular networks in vitro. Implantation of these gels resulted in plasma hGH levels that decreased slightly over 2 weeks and then remained stable for at least 6 weeks. BAECs incorporated into blood vessels within both the implant and fibrous capsule that surrounded and invaded implants. Within implants containing BAECs and fibroblasts, viable BAECs were present for at least 6 weeks at a higher density than in implants containing BAECs alone at 3 weeks. These results indicate that implanted BAECs can incorporate into host blood vessels and that inclusion of fibroblasts in this system prolongs BAEC survival and hGH delivery.


American Journal of Physiology-cell Physiology | 2010

oxLDL-induced decrease in lipid order of membrane domains is inversely correlated with endothelial stiffness and network formation

Tzu Pin Shentu; Igor Titushkin; Dev K. Singh; Keith J. Gooch; Papasani V. Subbaiah; Michael Cho; Irena Levitan

Oxidized low-density lipoprotein (oxLDL) is a major factor in development of atherosclerosis. Our earlier studies have shown that exposure of endothelial cells (EC) to oxLDL increases EC stiffness, facilitates the ability of the cells to generate force, and facilitates EC network formation in three-dimensional collagen gels. In this study, we show that oxLDL induces a decrease in lipid order of membrane domains and that this effect is inversely correlated with endothelial stiffness, contractility, and network formation. Local lipid packing of cell membrane domains was assessed by Laurdan two-photon imaging, endothelial stiffness was assessed by measuring cellular elastic modulus using atomic force microscopy, cell contractility was estimated by measuring the ability of the cells to contract collagen gels, and EC angiogenic potential was estimated by visualizing endothelial networks within the same gels. The impact of oxLDL on endothelial biomechanics and network formation is fully reversed by supplying the cells with a surplus of cholesterol. Furthermore, exposing the cells to 7-keto-cholesterol, a major oxysterol component of oxLDL, or to another cholesterol analog, androstenol, also results in disruption of lipid order of membrane domains and an increase in cell stiffness. On the basis of these observations, we suggest that disruption of lipid packing of cholesterol-rich membrane domains plays a key role in oxLDL-induced changes in endothelial biomechanics.

Collaboration


Dive into the Keith J. Gooch's collaboration.

Top Co-Authors

Avatar

Alisha L. Sieminski

Franklin W. Olin College of Engineering

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason W. Nichol

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irena Levitan

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

J. William Gaynor

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa E. Freed

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge