Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kejun Kang is active.

Publication


Featured researches published by Kejun Kang.


Applied Physics Letters | 2009

Quantitative grating-based x-ray dark-field computed tomography

Zhentian Wang; Kejun Kang; Zhifeng Huang; Zhiqiang Chen

Grating-based x-ray dark-field computed tomography is a functional method that utilizes the scattering contrast mechanism to explore the inaccessible spatially resolved internal structure of the sample. In this letter, we show that the second moment of the scattering angle distribution can be expressed as the minus logarithm of the visibility degradation of the oscillation curve in grating-based imaging. According to the conclusion of Khelashvili et al. [Phys. Med. Biol. 51, 221 (2006)], the minus logarithm of the visibility ratio fulfills the line integral condition; consequently the scattering information can be reconstructed quantitatively by conventional computed tomography algorithms. Results from a computer simulation and from an actual experiment both validate our deduction.


Applied Physics Letters | 2006

Direct computed tomographic reconstruction for directional-derivative projections of computed tomography of diffraction enhanced imaging

Zhifeng Huang; Kejun Kang; Zheng Li; Peiping Zhu; Qingxi Yuan; Wanxia Huang; Junyue Wang; Di Zhang; Ai-Min Yu

X-ray diffraction enhanced imaging based on synchrotron radiation has extremely high sensitivity of weakly absorbing low-Z samples in medical and biological fields. This letter is dedicated to a direct reconstruction algorithm for directional-derivative projections of computed tomography of diffraction enhanced imaging. It is a “one-step” algorithm and does not require any restoration processing compared with the current “two-step” methods. The actual values of the sample’s refractive index decrement can be estimated from its reconstruction images directly. The algorithm is proven by the actual experiment at the Beijing Synchrotron Radiation Facility and the reconstructed images are described finally.


Frontiers of Physics in China | 2013

Introduction to the CDEX experiment

Kejun Kang; Jianping Cheng; Jin Li; Y.L. Li; Qian Yue; Yang Bai; Yong Bi; J.P. Chang; Nan Chen; Ning Chen; Qing-Hao Chen; Y.H. Chen; Yo-Chun Chuang; Zhi Deng; Qiang Du; H. Gong; X.Q. Hao; Hong-Jian He; Q.J. He; Xin-Hui Hu; H.X. Huang; T.R. Huang; H. Jiang; Hau-Bin Li; J.M. Li; Jun Li; Xia Li; Xin-Ying Li; Xue-Qian Li; Y. Li

It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our detectors on the earth. Many collaborations in the world are carrying out various experiments to directly detect DM particles. China Jinping underground Laboratory (CJPL) is the deepest underground laboratory in the world and provides a very promising environment for DM search. China Dark matter EXperiment (CDEX) is going to directly detect the WIMP flux with high sensitivity in the low WIMP-mass region. Both CJPL and CDEX have achieved a remarkable progress in recent three years. CDEX employs a point-contact germanium (PCGe) semi-conductor detector whose energy threshold is less than 300 eV. In this report we present the measurement results of muon flux, monitoring of radioactivity and radon concentration carried out in CJPL, as well describing the structure and performance of the 1 kg-PCGe detector in CDEX-1 and 10 kg-PCGe detector array in CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of CDEX-1, CDEX-10 and the future CDEX-1T experiments.


Journal of Physics: Conference Series | 2010

Status and Prospects of a Deep Underground Laboratory in China

Kejun Kang; Jianping Cheng; Y H Chen; Y. Li; M B Shen; S Y Wu; Q. Yue

An excellent candidate location for a deep underground laboratory with more than 2500 m of rock overburden has been identified at Sichuan Province in China. It can be accessed through a road tunnel of length 17.5 km, and is supported by services and amenities near the entrance provided by the local Ertan Hydropower Plant. The particle physics community in China is actively pursuing the construction of an underground laboratory at this location, under the leadership of Tsinghua University. Memorandum has been signed with Ertan Hydropower Plant which permits access to and construction of the underground laboratory — China JinPing Deep Underground Laboratory (CJPL). The basic features of this underground site, as well as the status and schedules of the construction of the first laboratory cavern are presented. The immediate goal is to have the first experiment operational in 2010, deploying an Ultra-Low-Energy Germanium detector for WIMP dark matter searches, with emphasis on the mass range of 1-10 GeV. The conceptual design of the experiment, as well as the future plans and prospects of the laboratory, will be surveyed.


Journal of X-ray Science and Technology | 2009

A general region-of-interest image reconstruction approach with truncated Hilbert transform

Liang Li; Kejun Kang; Zhiqiang Chen; Li Zhang; Yuxiang Xing

This paper presents a novel data sufficiency condition that unique and stable ROI reconstruction can be achieved from a more flexible family of data sets. To the interior problem, it allows the ROI (Region-of-interest) can be reconstructed from the line integrals passing through this ROI and a small region B located anywhere as long as the image is known on B. Especially, ROI reconstruction can be achieved without any other a priori knowledge when region B is placed outside the object support. We also develop a general reconstruction algorithm with the DBP-POCS (Differentiated backprojection-projection onto convex sets) method. Finally, both numerical and real experiments were done to illustrate the new data sufficiency condition and the good stability of the ROI reconstruction algorithm.


Physical Review D | 2013

First results on low-mass WIMPs from the CDEX-1 experiment at the China Jinping underground laboratory

W. Zhao; Q. Du; H.J. He; Nan Chen; Z.Z. Xianyu; J.M. Wang; M.B. Shen; J.Q. Qin; Shin-Ted Lin; H. Jiang; S.K. Liu; M. G. Zhao; Y.C. Chuang; Lakhwinder Singh; Su-Ning Zhong; Zhi Zeng; Henry T. Wong; Jianping Cheng; Y. Li; Xin-Hua Hu; Z. Y. Deng; J.P. Chang; L. Zhang; Kejun Kang; H. Yu; S.J. Mao; Wei Wu; Y. Bai; H. B. Li; Q. Yue

The China Dark matter Experiment collaboration reports the first experimental limit on WIMP dark matter from 14.6 kg-day of data taken with a 994 g p-type point-contact germanium detector at the China Jinping underground Laboratory where the rock overburden is more than 2400 m. The energy threshold achieved was 400 eVee. According to the 14.6 kg-day live data, we placed the limit of N= 1.75 * 10^{-40} cm^{2} at 90% confidence level on the spin-independent cross-section at WIMP mass of 7 GeV before differentiating bulk signals from the surface backgrounds.


Journal of X-ray Science and Technology | 2011

A curve-filtered FDK (C-FDK) reconstruction algorithm for circular cone-beam CT

Liang Li; Yuxiang Xing; Zhiqiang Chen; Li Zhang; Kejun Kang

Circular cone-beam CT is one of the most popular configurations in both medical and industrial applications. The FDK algorithm is the most popular method for circular cone-beam CT. However, with increasing cone-angle the cone-beam artifacts associated with the FDK algorithm deteriorate because the circular trajectory does not satisfy the data sufficiency condition. Along with an experimental evaluation and verification, this paper proposed a curve-filtered FDK (C-FDK) algorithm. First, cone-parallel projections are rebinned from the native cone-beam geometry in two separate directions. C-FDK rebins and filters projections along different curves from T-FDK in the centrally virtual detector plane. Then, numerical experiments are done to validate the effectiveness of the proposed algorithm by comparing with both FDK and T-FDK reconstruction. Without any other extra trajectories supplemental to the circular orbit, C-FDK has a visible image quality improvement.


Journal of Applied Physics | 2007

Terahertz absorbance spectrum fitting method for quantitative detection of concealed contraband

Yingxin Wang; Ziran Zhao; Zhiqiang Chen; Kejun Kang; Bing Feng; Yan Zhang

We present a quantitative method for the nondestructive detection of concealed contraband based on terahertz transmission spectroscopy. Without knowing the prior information of barrier materials, the amount of concealed contraband can be extracted by approximating the terahertz absorbance spectrum of the barrier material with a low-order polynomial and then fitting the measured absorbance spectrum of the inspected object with the polynomial and the known standard spectrum of this kind of contraband. We verify the validity of this method using a sample of explosive 1,3,5-trinitro-s-triazine (RDX) covered with several different barrier materials which are commonly encountered in actual inspection, and good agreement between the calculated and actual value of the amount of RDX is obtained for the experiments performed under both nitrogen and air atmospheres. This indicates that the presented method can achieve quantitative detection of hidden contraband, which is important for security inspection applications.


Physics in Medicine and Biology | 2006

A general exact method for synthesizing parallel-beam projections from cone-beam projections via filtered backprojection.

Liang Li; Zhiqiang Chen; Yuxiang Xing; Li Zhang; Kejun Kang; Ge Wang

In recent years, image reconstruction methods for cone-beam computed tomography (CT) have been extensively studied. However, few of these studies discussed computing parallel-beam projections from cone-beam projections. Here, we focus on exact synthesis of complete parallel-beam projections from cone-beam projections. First, an extended central slice theorem is described to establish a relationship between the Radon space and the Fourier space. Then, data sufficiency conditions are proposed for computing parallel-beam projection data from cone-beam data. Using these results, a general filtered backprojection algorithm is formulated that can exactly synthesize parallel-beam projection data from cone-beam projection data. As an example, we prove that parallel-beam projections can be exactly synthesized in an angular range in the case of circular cone-beam scanning. Interestingly, this angular range is larger than that derived in the Feldkamp reconstruction framework. Numerical experiments are performed in the circular scanning case to verify our method.


Applied Optics | 2011

Continuous-wave terahertz phase imaging using a far-infrared laser interferometer

Yingxin Wang; Ziran Zhao; Zhiqiang Chen; Li Zhang; Kejun Kang; Jingkang Deng

Terahertz phase imaging can reveal the depth information of an optically opaque object and provide much better contrast for weak-absorption materials. We demonstrate a continuous-wave terahertz interferometric imaging method in which a far-infrared laser interferometer is used to measure the phase distribution with diffraction-limited lateral resolution and subwavelength axial resolution. An improved four-step phase-shifting algorithm is introduced to retrieve the phase map with very high accuracy and low distortion. The relative depth profiles of two transparent samples are successfully extracted by using this method. Experimental results verify that terahertz interferometric imaging in combination with the phase-shifting technique enables effective reconstruction of the phase image of the object under test.

Collaboration


Dive into the Kejun Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge