Kelley M. Hovis
VCU Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kelley M. Hovis.
Journal of Bacteriology | 2004
Kelley M. Hovis; John V. McDowell; LaToya Griffin; Richard T. Marconi
In North America, tick-borne relapsing fever (TBRF) is caused by the spirochete species Borrelia hermsii, Borrelia parkeri, and Borrelia turicatae. We previously demonstrated that some isolates of B. hermsii and B. parkeri are capable of binding factor H and that cell-bound factor H can participate in the factor I-mediated cleavage of C3b. Isolates that bound factor H expressed a factor H-binding protein (FHBP) that we estimated to be approximately 19 to 20 kDa in size and thus, pending further characterization, temporarily designated FHBP19. Until this report, none of the FHBPs of the TBRF spirochetes had been characterized. Here we have recovered the gene encoding the FHBP of B. hermsii YOR from a lambda ZAP II library and determined its sequence. The gene encodes a full-length protein of 22.7 kDa, which after processing is predicted to be 20.5 kDa. This protein, which we redesignate factor H-binding protein A (FhbA), is unique to B. hermsii. Two-dimensional pulsed-field gel electrophoresis and hybridization analyses revealed that the B. hermsii gene encoding FhbA is a single genetic locus that maps to a linear plasmid of approximately 220 kb. The general properties of FhbA were also assessed. The protein was found to be surface exposed and lipidated. Analysis of the antibody response to FhbA in infected mice revealed that it is antigenic during infection, indicating expression during infection. The identification and characterization of FhbA provides further insight into the molecular mechanisms of pathogenesis of the relapsing fever spirochetes.
Infection and Immunity | 2006
Kelley M. Hovis; Emily Tran; Christina M. Sundy; Eric L. Buckles; John V. McDowell; Richard T. Marconi
ABSTRACT The binding of Borrelia burgdorferi OspE, OspF, and family 163 (Elp) proteins to factor H/factor H-like protein 1 (FHL-1) and other serum proteins from different animals was assessed. OspE paralogs bound factor H and unidentified serum proteins from a subset of animals, while OspF and Elp proteins did not. These data advance our understanding of factor H binding, the host range of the Lyme spirochetes, and the expanding role of OspE in pathogenesis.
Infection and Immunity | 2006
Kelley M. Hovis; Janice P. Jones; Tania Sadlon; Gauri Raval; David L. Gordon; Richard T. Marconi
ABSTRACT Borrelia hermsii, the primary etiological agent of tick-borne relapsing fever in North America, binds the complement regulatory protein factor H (FH) as a means of evading opsonophagocytosis and the alternative complement pathway. The ability of FH-binding protein A (FhbA) to bind FH-like protein 1 (FHL-1) has not been assessed previously. In this study, using a whole-cell absorption assay, we demonstrated that B. hermsii absorbs both FH and FHL-1 from human serum. Consistent with this, affinity ligand binding immunoblot analyses revealed that FH constructs spanning short consensus repeats 1 to 7 and 16 to 20 bind to FhbA. To investigate the molecular basis of the interaction of FhbA with FH/FHL-1, recombinant FhbA truncated proteins were generated and tested for FH/FHL-1 binding. Binding required determinants located in both the N- and C-terminal domains of FhbA, suggesting that long-range intramolecular interactions are involved in the formation and presentation of the FH/FHL-1-binding pocket. To identify specific FhbA residues involved in binding, random mutagenesis was performed. These analyses identified a loop region of FhbA that may serve as a contact point for FH/FHL-1. The data presented here expand our understanding of the pathogenic mechanisms of the relapsing fever spirochetes and of the molecular nature of the interaction between FH/FHL-1 and FhbA.
Molecular Microbiology | 2008
Clayton C. Caswell; Runlin Han; Kelley M. Hovis; Pawel Ciborowski; Douglas R. Keene; Richard T. Marconi; Slawomir Lukomski
Non‐specific activation of the complement system is regulated by the plasma glycoprotein factor H (FH). Bacteria can avoid complement‐mediated opsonization and phagocytosis through acquiring FH to the cell surface. Here, we characterize an interaction between the streptococcal collagen‐like protein Scl1.6 of M6‐type group A Streptococcus (GAS) and FH. Using affinity chromatography with immobilized recombinant Scl1.6 protein, we co‐eluted human plasma proteins with molecular weight of 155 kDa, 43 kDa and 38 kDa. Mass spectrometry identified the 155 kDa band as FH and two other bands as isoforms of the FH‐related protein‐1. The identities of all three bands were confirmed by Western immunoblotting with specific antibodies. Structure–function relation studies determined that the globular domain of the Scl1.6 variant specifically binds FH while fused to collagenous tails of various lengths. This binding is not restricted to Scl1.6 as the phylogenetically linked Scl1.55 variant also binds FH. Functional analyses demonstrated the cofactor activity of the rScl1.6‐bound FH for factor I‐mediated cleavage of C3b. Finally, purified FH bound to the Scl1.6 protein present in the cell wall material obtained from M6‐type GAS. In conclusion, we have identified a functional interaction between Scl1 and plasma FH, which may contribute to GAS evasion of complement‐mediated opsonization and phagocytosis.
Infection and Immunity | 2006
John V. McDowell; Kelley M. Hovis; Hongming Zhang; Emily Tran; Justin Lankford; Richard T. Marconi
ABSTRACT BBA68 (BbCRASP-1) of the Lyme disease spirochetes binds human factor H (FH) and FH-like protein 1 (FHL-1). Here we assess transcription of the BBA68 gene and production of BBA68 in infected mice and humans using real-time reverse transcriptase PCR and immunoblotting. The species specificity of FH binding to BBA68 was also tested. The data suggest that BBA68 does not play an important role in immune evasion in animals.
Infection and Immunity | 2008
Kelley M. Hovis; John C. Freedman; Hongming Zhang; Jonathan L. Forbes; Richard T. Marconi
ABSTRACT Borrelia hermsii, an etiological agent of tick-borne relapsing fever in North America, binds host-derived serum proteins including factor H (FH), plasminogen, and an unidentified 60-kDa protein via its FhbA protein. Two distinct phylogenetic types of FhbA have been delineated (FhbA1 and FhbA2). These orthologs share a conserved C-terminal domain that contains two alpha helices with a high predictive probability of coiled-coil formation that are separated by a 14-amino-acid loop domain. Through site-directed mutagenesis, we have identified residues within these domains that influence the binding of both mouse and human FH, plasminogen, and/or the 60-kDa protein. To further investigate the involvement of FhbA in the host-pathogen interaction, strains that are either FhbA+ (isolate YOR) or FhbA− (isolate REN) were tested for serum sensitivity. Significant differences were observed, with YOR and REN being serum resistant and serum sensitive (intermediate), respectively. To test the abilities of these strains to infect and persist in mice, mice were needle inoculated, and infectivity and persistence were then assessed. While both strains REN and YOR infected mice, only the FhbA+ YOR strain persisted beyond day 4. Survival of the YOR isolate in blood correlated with the upregulation of the fhbA gene, as demonstrated by real-time reverse transcriptase PCR. These data advance our understanding of the unique interactions of FhbA with individual serum proteins and provide support for the hypothesis that FhbA is an important contributor to the pathogenesis of the relapsing fever spirochete B. hermsii.
Infection and Immunity | 2006
Kelley M. Hovis; Martin E. Schriefer; Sonia Bahlani; Richard T. Marconi
ABSTRACT It has been demonstrated that Borrelia hermsii, a causative agent of relapsing fever, produces a factor H (FH) and FH-like protein 1 (FHL-1) binding protein. The binding protein has been designated FhbA. To determine if FH/FHL-1 binding is widespread among B. hermsii isolates, a diverse panel of strains was tested for the FH/FHL-1 binding phenotype and FhbA production. Most isolates (23/24) produced FhbA and bound FH/FHL-1. Potential variation in FhbA among isolates was analyzed by DNA sequence analyses. Two genetically distinct FhbA types, designated fhbA1 and fhbA2, were delineated, and type-specific PCR primers were generated to allow for rapid differentiation. Pulsed-field gel electrophoresis and hybridization analyses demonstrated that all isolates that possess the gene carry it on a 200-kb linear plasmid (lp200), whereas isolates that lack the gene lack lp200 and instead carry an lp170. To determine if FhbA is antigenic during infection and to assess the specificity of the response, recombinant FhbA1 (rFhbA1) and rFhbA2 were screened with serum from infected mice and humans. FhbA was found to be expressed and antigenic and to elicit a potentially type-specific FhbA response. To localize the epitopes of FhbA1 and FhbA2, truncations were generated and screened with infection serum. The epitopes were determined to be conformationally defined. Collectively, these analyses indicate that FH/FHL-1 binding is a widespread virulence mechanism for B. hermsii and provide insight into the genetic and antigenic structure of FhbA. The data also have potential implications for understanding the epidemiology of relapsing fever in North America and can be applied to the future development of species-specific diagnostic tools.
Molecular Immunology | 2009
Taru Meri; Markus J. Lehtinen; John V. McDowell; Kelley M. Hovis; Seppo Meri; Ilkka Seppälä; Richard T. Marconi; T.S. Jokiranta
Molecular Immunology | 2007
Kelley M. Hovis; John V. McDowell; Tania Saldon; David L. Gordon; Lola V. Stamm; Richard T. Marconi
Molecular Immunology | 2007
Kelley M. Hovis; Martin E. Schriefer; Tania Sadlon; David L. Gordon; Richard T. Marconi