Kelli M. Sas
Medical University of South Carolina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kelli M. Sas.
Journal of The American Society of Nephrology | 2011
P. Darwin Bell; Wayne R. Fitzgibbon; Kelli M. Sas; Antine E. Stenbit; May Y. Amria; Amber Houston; Ryan Reichert; Sandra K. Gilley; Gene P. Siegal; John J. Bissler; Mehmet Bilgen; Peter Cheng Te Chou; Lisa M. Guay-Woodford; Brad Yoder; Courtney J. Haycraft; Brian J. Siroky
Primary cilia dysfunction alters renal tubular cell proliferation and differentiation and associates with accelerated cyst formation in polycystic kidney disease. However, the mechanism leading from primary ciliary dysfunction to renal cyst formation is unknown. We hypothesize that primary cilia prevent renal cyst formation by suppressing pathologic tubular cell hypertrophy and proliferation. Unilateral nephrectomy initiates tubular cell hypertrophy and proliferation in the contralateral kidney and provides a tool to examine primary cilia regulation of renal hypertrophy. Conditional knockout of the primary cilia ift88 gene leads to delayed, adult-onset renal cystic disease, which provides a window of opportunity to conduct unilateral nephrectomy and examine downstream kinetics of renal hypertrophy and cyst formation. In wild-type animals, unilateral nephrectomy activated the mTOR pathway and produced appropriate structural and functional hypertrophy without renal cyst formation. However, in ift88 conditional knockout animals, unilateral nephrectomy triggered increased renal hypertrophy and accelerated renal cyst formation, leading to renal dysfunction. mTOR signaling also increased compared with wild-type animals, suggesting a mechanistic cascade starting with primary ciliary dysfunction, leading to excessive mTOR signaling and renal hypertrophic signaling and culminating in cyst formation. These data suggest that events initiating hypertrophic signaling, such as structural or functional loss of renal mass, may accelerate progression of adult polycystic kidney disease toward end-stage renal disease.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2014
Sandra K. Gilley; Antine E. Stenbit; Raymond C. Pasek; Kelli M. Sas; Stacy L. Steele; May Y. Amria; Marlene A. Bunni; Kimberly P. Estell; Lisa M. Schwiebert; Patrick A. Flume; Monika Gooz; Courtney J. Haycraft; Bradley K. Yoder; Caroline Miller; Jacqueline A. Pavlik; Grant A. Turner; Joseph H. Sisson; P. Darwin Bell
The mechanisms for the development of bronchiectasis and airway hyperreactivity have not been fully elucidated. Although genetic, acquired diseases and environmental influences may play a role, it is also possible that motile cilia can influence this disease process. We hypothesized that deletion of a key intraflagellar transport molecule, IFT88, in mature mice causes loss of cilia, resulting in airway remodeling. Airway cilia were deleted by knockout of IFT88, and airway remodeling and pulmonary function were evaluated. In IFT88(-) mice there was a substantial loss of airway cilia on respiratory epithelium. Three months after the deletion of cilia, there was clear evidence for bronchial remodeling that was not associated with inflammation or apparent defects in mucus clearance. There was evidence for airway epithelial cell hypertrophy and hyperplasia. IFT88(-) mice exhibited increased airway reactivity to a methacholine challenge and decreased ciliary beat frequency in the few remaining cells that possessed cilia. With deletion of respiratory cilia there was a marked increase in the number of club cells as seen by scanning electron microscopy. We suggest that airway remodeling may be exacerbated by the presence of club cells, since these cells are involved in airway repair. Club cells may be prevented from differentiating into respiratory epithelial cells because of a lack of IFT88 protein that is necessary to form a single nonmotile cilium. This monocilium is a prerequisite for these progenitor cells to transition into respiratory epithelial cells. In conclusion, motile cilia may play an important role in controlling airway structure and function.
Journal of The American Society of Nephrology | 2017
Farsad Afshinnia; Thekkelnaycke M. Rajendiran; Tanu Soni; Jaeman Byun; Stefanie Wernisch; Kelli M. Sas; Jennifer Hawkins; Keith Bellovich; Debbie S. Gipson; George Michailidis; Subramaniam Pennathur; Matthias Kretzler; Zeenat Yousuf Bhat; Crystal A. Gadegbeku; Susan F. Massengill; Kalyani Perumal
Studies of lipids in CKD, including ESRD, have been limited to measures of conventional lipid profiles. We aimed to systematically identify 17 different lipid classes and associate the abundance thereof with alterations in acylcarnitines, a metric of β-oxidation, across stages of CKD. From the Clinical Phenotyping Resource and Biobank Core (CPROBE) cohort of 1235 adults, we selected a panel of 214 participants: 36 with stage 1 or 2 CKD, 99 with stage 3 CKD, 61 with stage 4 CKD, and 18 with stage 5 CKD. Among participants, 110 were men (51.4%), 64 were black (29.9%), and 150 were white (70.1%), and the mean (SD) age was 60 (16) years old. We measured plasma lipids and acylcarnitines using liquid chromatography-mass spectrometry. Overall, we identified 330 different lipids across 17 different classes. Compared with earlier stages, stage 5 CKD associated with a higher abundance of saturated C16-C20 free fatty acids (FFAs) and long polyunsaturated complex lipids. Long-chain-to-intermediate-chain acylcarnitine ratio, a marker of efficiency of β-oxidation, exhibited a graded decrease from stage 2 to 5 CKD (P<0.001). Additionally, multiple linear regression revealed that the long-chain-to-intermediate-chain acylcarnitine ratio inversely associated with polyunsaturated long complex lipid subclasses and the C16-C20 FFAs but directly associated with short complex lipids with fewer double bonds. We conclude that increased abundance of saturated C16-C20 FFAs coupled with impaired β-oxidation of FFAs and inverse partitioning into complex lipids may be mechanisms underpinning lipid metabolism changes that typify advancing CKD.
International Journal of Hygiene and Environmental Health | 2010
Kelli M. Sas; John E. Baatz
Brevetoxins, the algal toxins produced by Karenia brevis during red tide blooms, adversely impact health following ingestion or inhalation. Inhalation of brevetoxins results in a variety of acute symptoms including coughing, wheezing, and shortness of breath. Analysis of manatee lungs following death by purported brevetoxicosis has identified brevetoxin accumulation within macrophages, with pathological manifestions of lung congestion, inflammation, and edema. The goals of this work were to specifically examine effects of brevetoxin-2 on alveolar macrophages, a key cell in responding to toxins in the lung, as well as to determine if brevetoxin-2 results in an inflammatory response and/or direct cytotoxicity. Exposure of an alveolar macrophage cell line (MH-S) to an environmentally and physiologically relevant dose of brevetoxin-2 (0.5microg/ml) did not significantly alter cellular growth over a 24h time period. However, exposure of MH-S cells to brevetoxin-2 for 6h increased phagocytosis of latex beads, increased secretion of interleukin (IL)-2, IL-4, and tumor necrosis factor-alpha, and decreased secretion of IL-5. Very few changes were seen in gene expression following 3 or 6h exposure to brevetoxin-2. These results show that brevetoxin-2 induced an immune response indicative of inflammation in an alveolar macrophage cell line, indicating that inhalation of brevetoxin-2 may lead to lung inflammation through an alveolar macrophage-initiated pathway.
American Journal of Physiology-renal Physiology | 2011
Kelli M. Sas; Michael G. Janech; Elizabeth G. Favre; John M. Arthur; P. Darwin Bell
Renal epithelial cell primary cilia act as mechanosensors in response to changes in luminal fluid flow. To determine the role of cilia bending in the mechanosensory function of cilia, we performed proteomic analysis of collecting duct cell lines with or without cilia that were kept stationary or rotated to stimulate cilia bending. Expression of the Raf-1 kinase inhibitor protein (RKIP), an inhibitor of the MAPK pathway, was significantly elevated in rotated cilia (+) cells. This was compared with RKIP levels in cilia (-) cells that were stationary or rotated as well as in cilia (+) cells that were stationary. This result was confirmed in cilia knockout adult mice that had lower renal RKIP levels compared with adult mice with cilia. Downstream of RKIP, expression of phosphorylated ERK was decreased only in cells that had cilia and were subjected to constant cilia bending. Furthermore, elevated RKIP levels were associated with reduced cell proliferation. Blockade of PKC abrogated ciliary bending-induced increases in RKIP. In summary, we found that ciliary movement may help control the expression of the Raf-1 kinase inhibitor protein and thus maintain cell differentiation. In terms of polycystic kidney disease, loss of cilia and therefore sensitivity to flow may lead to reduced RKIP levels, activation of the MAPK pathway, and contribute to the formation of cysts.
American Journal of Physiology-renal Physiology | 2010
Kelli M. Sas
polycystic kidney disease (PKD) is a genetic disorder characterized by the formation of fluid-filled cysts, primarily within the kidneys but also in the liver. Autosomal dominant PKD (ADPKD) has an incidence rate of 1:400–1,000 and is the most common genetic cause of renal failure. ADPKD has been
American Journal of Physiology-renal Physiology | 2015
Kelli M. Sas; Hong Yin; Wayne R. Fitzgibbon; Catalin F. Baicu; Michael R. Zile; Stacy L. Steele; May Y. Amria; Takamitsu Saigusa; Jason A. Funk; Marlene A. Bunni; Gene P. Siegal; Brian J. Siroky; John J. Bissler; P. Darwin Bell
Diabetes | 2018
Kelli M. Sas; Jiahe Lin; Viji Nair; Matthias Kretzler; Frank C. Brosius; Subramaniam Pennathur
Diabetes | 2018
Steven F. Abcouwer; Sumathi Shanmugam; Heather Hager; Cheng-Mao Lin; Patrice E. Fort; Thomas W. Gardner; Kelli M. Sas; Subramaniam Pennathur
Archive | 2013
Sandra K. Gilley; Antine E. Stenbit; Raymond C. Pasek; Kelli M. Sas; Stacy L. Steele; Marlene A. Bunni; Kimberly P. Estell; Lisa M. Schwiebert; Patrick A. Flume; Monika Gooz; Courtney J. Haycraft; Bradley K. Yoder; Caroline Miller; A Jacqueline; Grant A. Turner; Joseph H. Sisson; P. Darwin Bell; Ralph H. Johnson Vamc; Charleston Sc