Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly A. Dryden is active.

Publication


Featured researches published by Kelly A. Dryden.


Journal of Virology | 2010

Ultrastructural and Biophysical Characterization of Hepatitis C Virus Particles Produced in Cell Culture

Pablo Gastaminza; Kelly A. Dryden; Bryan Boyd; Malcolm R. Wood; Mansun Law; Mark Yeager; Francis V. Chisari

ABSTRACT We analyzed the biochemical and ultrastructural properties of hepatitis C virus (HCV) particles produced in cell culture. Negative-stain electron microscopy revealed that the particles were spherical (∼40- to 75-nm diameter) and pleomorphic and that some of them contain HCV E2 protein and apolipoprotein E on their surfaces. Electron cryomicroscopy revealed two major particle populations of ∼60 and ∼45 nm in diameter. The ∼60-nm particles were characterized by a membrane bilayer (presumably an envelope) that is spatially separated from an internal structure (presumably a capsid), and they were enriched in fractions that displayed a high infectivity-to-HCV RNA ratio. The ∼45-nm particles lacked a membrane bilayer and displayed a higher buoyant density and a lower infectivity-to-HCV RNA ratio. We also observed a minor population of very-low-density, >100-nm-diameter vesicular particles that resemble exosomes. This study provides low-resolution ultrastructural information of particle populations displaying differential biophysical properties and specific infectivity. Correlative analysis of the abundance of the different particle populations with infectivity, HCV RNA, and viral antigens suggests that infectious particles are likely to be present in the large ∼60-nm HCV particle populations displaying a visible bilayer. Our study constitutes an initial approach toward understanding the structural characteristics of infectious HCV particles.


Journal of Virology | 2004

Nodavirus Coat Protein Imposes Dodecahedral RNA Structure Independent of Nucleotide Sequence and Length

Mariana Tihova; Kelly A. Dryden; Thuc-vy L. Le; Stephen C. Harvey; John E. Johnson; Mark Yeager; Anette Schneemann

ABSTRACT The nodavirus Flock house virus (FHV) has a bipartite, positive-sense RNA genome that is packaged into an icosahedral particle displaying T=3 symmetry. The high-resolution X-ray structure of FHV has shown that 10 bp of well-ordered, double-stranded RNA are located at each of the 30 twofold axes of the virion, but it is not known which portions of the genome form these duplex regions. The regular distribution of double-stranded RNA in the interior of the virus particle indicates that large regions of the encapsidated genome are engaged in secondary structure interactions. Moreover, the RNA is restricted to a topology that is unlikely to exist during translation or replication. We used electron cryomicroscopy and image reconstruction to determine the structure of four types of FHV particles that differed in RNA and protein content. RNA-capsid interactions were primarily mediated via the N and C termini, which are essential for RNA recognition and particle assembly. A substantial fraction of the packaged nucleic acid, either viral or heterologous, was organized as a dodecahedral cage of duplex RNA. The similarity in tertiary structure suggests that RNA folding is independent of sequence and length. Computational modeling indicated that RNA duplex formation involves both short-range and long-range interactions. We propose that the capsid protein is able to exploit the plasticity of the RNA secondary structures, capturing those that are compatible with the geometry of the dodecahedral cage.


PLOS Pathogens | 2007

A Viral Nanoparticle with Dual Function as an Anthrax Antitoxin and Vaccine

Darly J. Manayani; Diane Thomas; Kelly A. Dryden; Vijay S. Reddy; Marc E Siladi; John Marlett; G. Jonah A. Rainey; Michael E. Pique; Heather M. Scobie; Mark Yeager; John A. T. Young; Marianne Manchester; Anette Schneemann

The recent use of Bacillus anthracis as a bioweapon has stimulated the search for novel antitoxins and vaccines that act rapidly and with minimal adverse effects. B. anthracis produces an AB-type toxin composed of the receptor-binding moiety protective antigen (PA) and the enzymatic moieties edema factor and lethal factor. PA is a key target for both antitoxin and vaccine development. We used the icosahedral insect virus Flock House virus as a platform to display 180 copies of the high affinity, PA-binding von Willebrand A domain of the ANTXR2 cellular receptor. The chimeric virus-like particles (VLPs) correctly displayed the receptor von Willebrand A domain on their surface and inhibited lethal toxin action in in vitro and in vivo models of anthrax intoxication. Moreover, VLPs complexed with PA elicited a potent toxin-neutralizing antibody response that protected rats from anthrax lethal toxin challenge after a single immunization without adjuvant. This recombinant VLP platform represents a novel and highly effective, dually-acting reagent for treatment and protection against anthrax.


Journal of Virology | 2008

Structure of Antibody-Neutralized Murine Norovirus and Unexpected Differences from Viruslike Particles

Umesh Katpally; Christiane E. Wobus; Kelly A. Dryden; Herbert W. Virgin; Thomas J. Smith

ABSTRACT Noroviruses (family Caliciviridae) are the major cause of epidemic nonbacterial gastroenteritis in humans, but the mechanism of antibody neutralization is unknown and no structure of an infectious virion has been reported. Murine norovirus (MNV) is the only norovirus that can be grown in tissue culture, studied in an animal model, and reverse engineered via an infectious clone and to which neutralizing antibodies have been isolated. Presented here are the cryoelectron microscopy structures of an MNV virion and the virion in complex with neutralizing Fab fragments. The most striking differences between MNV and previous calicivirus structures are that the protruding domain is lifted off the shell domain by ∼16Å and rotated ∼40° in a clockwise fashion and forms new interactions at the P1 base that create a cagelike structure engulfing the shell domains. Neutralizing Fab fragments cover the outer surface of each copy of the capsid protein P2 domains without causing any apparent conformational changes. These unique features of MNV suggest that at least some caliciviruses undergo a capsid maturation process akin to that observed with other plant and bacterial viruses.


Cytometry Part A | 2014

Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry

Uta Erdbrügger; Christine K. Rudy; Mark E. Etter; Kelly A. Dryden; Mark Yeager; Alexander L. Klibanov; Joanne Lannigan

Microparticles (MPs) are submicron vesicles released from cell membranes in response to activation, cell injury, or apoptosis. The clinical importance of MPs has become increasingly recognized, although no standardized method exists for their measurement. Flow cytometry (FCM) is the most commonly used technique, however, because of the small size of MPs, and the limitations of current FCM instrumentation, accurate identification is compromised by this methodology. We decided to investigate whether the use of FCM combined with imaging, such as is possible with the ImagestreamX imaging FC (ISX), would be a more sensitive approach to characterizing MPs. Combining FCM with imaging eliminates some of the limitations demonstrated by conventional FCM, whereas also providing morphological confirmation and the ability to distinguish true single events from aggregates and cell debris. The detection limit of standard nonspecialized FCM is suboptimal when compared to ISX. Evaluating MPs below 0.200 µm and sizing remain a challenge as some MPs remain below the detection limit of ISX. Standardized calibrators, that more closely reflect the physical characteristics of MPs, need further development.


Nature | 2016

Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation

Claudia Z. Han; Ignacio J. Juncadella; Jason M. Kinchen; Monica W. Buckley; Alexander L. Klibanov; Kelly A. Dryden; Suna Onengut-Gumuscu; Uta Erdbrügger; Stephen D. Turner; Yun M. Shim; Kenneth S. K. Tung; Kodi S. Ravichandran

Professional phagocytes (such as macrophages) and non-professional phagocytes (such as epithelial cells) clear billions of apoptotic cells and particles on a daily basis. Although professional and non-professional macrophages reside in proximity in most tissues, whether they communicate with each other during cell clearance, and how this might affect inflammation, is not known. Here we show that macrophages, through the release of a soluble growth factor and microvesicles, alter the type of particles engulfed by non-professional phagocytes and influence their inflammatory response. During phagocytosis of apoptotic cells or in response to inflammation-associated cytokines, macrophages released insulin-like growth factor 1 (IGF-1). The binding of IGF-1 to its receptor on non-professional phagocytes redirected their phagocytosis, such that uptake of larger apoptotic cells was reduced whereas engulfment of microvesicles was increased. IGF-1 did not alter engulfment by macrophages. Macrophages also released microvesicles, whose uptake by epithelial cells was enhanced by IGF-1 and led to decreased inflammatory responses by epithelial cells. Consistent with these observations, deletion of IGF-1 receptor in airway epithelial cells led to exacerbated lung inflammation after allergen exposure. These genetic and functional studies reveal that IGF-1- and microvesicle-dependent communication between macrophages and epithelial cells can critically influence the magnitude of tissue inflammation in vivo.


Journal of Virology | 2004

Effects of Blocking Individual Maturation Cleavages in Murine Leukemia Virus Gag

Masamichi Oshima; Delphine Muriaux; Jane Mirro; Kunio Nagashima; Kelly A. Dryden; Mark Yeager; Alan Rein

ABSTRACT A single protein, termed Gag, is responsible for retrovirus particle assembly. After the assembled virion is released from the cell, Gag is cleaved at several sites by the viral protease (PR). The cleavages catalyzed by PR bring about a wide variety of physical changes in the particle, collectively termed maturation, and convert the particle into an infectious virion. In murine leukemia virus (MLV) maturation, Gag is cleaved at three sites, resulting in formation of the matrix (MA), p12, capsid (CA), and nucleocapsid (NC) proteins. We introduced mutations into MLV that inhibited cleavage at individual sites in Gag. All mutants had lost the intensely staining ring characteristic of immature particles; thus, no single cleavage event is required for this feature of maturation. Mutant virions in which MA was not cleaved from p12 were still infectious, with a specific infectivity only ∼10-fold below that of the wild type. Particles in which p12 and CA could not be separated from each other were noninfectious and lacked a well-delineated core despite the presence of dense material in their interiors. In both of these mutants, the dimeric viral RNA had undergone the stabilization normally associated with maturation, suggesting that this change may depend upon the separation of CA from NC. Alteration of the C-terminal end of CA blocked CA-NC cleavage but also reduced the efficiency of particle formation and, in some cases, severely disrupted the ability of Gag to assemble into regular structures. This observation highlights the critical role of this region of Gag in assembly.


Journal of Molecular Biology | 2012

Immature and mature human astrovirus: structure, conformational changes, and similarities to hepatitis E virus.

Kelly A. Dryden; Mariana Tihova; Norbert Nowotny; Suzanne M. Matsui; Ernesto Méndez; Mark Yeager

Abstract Human astroviruses (HAstVs) are a major cause of gastroenteritis. HAstV assembles from the structural protein VP90 and undergoes a cascade of proteolytic cleavages. Cleavage to VP70 is required for release of immature particles from cells, and subsequent cleavage by trypsin confers infectivity. We used electron cryomicroscopy and icosahedral image analysis to determine the first experimentally derived, three-dimensional structures of an immature VP70 virion and a fully proteolyzed, infectious virion. Both particles display T =3 icosahedral symmetry and nearly identical solid capsid shells with diameters of ~350Å. Globular spikes emanate from the capsid surface, yielding an overall diameter of ~440Å. While the immature particles display 90 dimeric spikes, the mature capsid only displays 30 spikes, located on the icosahedral 2-fold axes. Loss of the 60 peripentonal spikes likely plays an important role in viral infectivity. In addition, immature HAstV bears a striking resemblance to the structure of hepatitis E virus (HEV)-like particles, as previously predicted from structural similarity of the crystal structure of the astrovirus spike domain with the HEV P-domain [Dong, J., Dong, L., Méndez, E. & Tao, Y. (2011). Crystal structure of the human astrovirus capsid spike. Proc. Natl. Acad. Sci. USA 108, 12681–12686]. Similarities between their capsid shells and dimeric spikes and between the sequences of their capsid proteins suggest that these viral families are phylogenetically related and may share common assembly and activation mechanisms.


Protein Science | 2009

Two-dimensional crystals of carboxysome shell proteins recapitulate the hexagonal packing of three-dimensional crystals

Kelly A. Dryden; Christopher S. Crowley; Shiho Tanaka; Todd O. Yeates; Mark Yeager

Bacterial microcompartments (BMCs) are large intracellular bodies that serve as simple organelles in many bacteria. They are proteinaceous structures composed of key enzymes encapsulated by a polyhedral protein shell. In previous studies, the organization of these large shells has been inferred from the conserved packing of the component shell proteins in two‐dimensional (2D) layers within the context of three‐dimensional (3D) crystals. Here, we show that well‐ordered, 2D crystals of carboxysome shell proteins assemble spontaneously when His‐tagged proteins bind to a monolayer of nickelated lipid molecules at an air–water interface. The molecular packing within the 2D crystals recapitulates the layered hexagonal sheets observed in 3D crystals. The results reinforce current models for the molecular design of BMC shells.


eLife | 2016

Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids.

Yen Li Li; Viswanathan Chandrasekaran; Stephen D. Carter; Cora L. Woodward; Devin E. Christensen; Kelly A. Dryden; Owen Pornillos; Mark Yeager; Barbie K. Ganser-Pornillos; Grant J. Jensen; Wesley I. Sundquist

TRIM5 proteins are restriction factors that block retroviral infections by binding viral capsids and preventing reverse transcription. Capsid recognition is mediated by C-terminal domains on TRIM5α (SPRY) or TRIMCyp (cyclophilin A), which interact weakly with capsids. Efficient capsid recognition also requires the conserved N-terminal tripartite motifs (TRIM), which mediate oligomerization and create avidity effects. To characterize how TRIM5 proteins recognize viral capsids, we developed methods for isolating native recombinant TRIM5 proteins and purifying stable HIV-1 capsids. Biochemical and EM analyses revealed that TRIM5 proteins assembled into hexagonal nets, both alone and on capsid surfaces. These nets comprised open hexameric rings, with the SPRY domains centered on the edges and the B-box and RING domains at the vertices. Thus, the principles of hexagonal TRIM5 assembly and capsid pattern recognition are conserved across primates, allowing TRIM5 assemblies to maintain the conformational plasticity necessary to recognize divergent and pleomorphic retroviral capsids. DOI: http://dx.doi.org/10.7554/eLife.16269.001

Collaboration


Dive into the Kelly A. Dryden's collaboration.

Top Co-Authors

Avatar

Mark Yeager

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariana Tihova

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anette Schneemann

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane L. Farsetta

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge