Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy S. Baker is active.

Publication


Featured researches published by Timothy S. Baker.


Cell | 2002

Structure of Dengue Virus: Implications for Flavivirus Organization, Maturation, and Fusion

Richard J. Kuhn; Wei Zhang; Michael G. Rossmann; Sergei V. Pletnev; Jeroen Corver; Edith M. Lenches; Christopher T. Jones; Suchetana Mukhopadhyay; Paul R. Chipman; Ellen G. Strauss; Timothy S. Baker; James H. Strauss

The first structure of a flavivirus has been determined by using a combination of cryoelectron microscopy and fitting of the known structure of glycoprotein E into the electron density map. The virus core, within a lipid bilayer, has a less-ordered structure than the external, icosahedral scaffold of 90 glycoprotein E dimers. The three E monomers per icosahedral asymmetric unit do not have quasiequivalent symmetric environments. Difference maps indicate the location of the small membrane protein M relative to the overlaying scaffold of E dimers. The structure suggests that flaviviruses, and by analogy also alphaviruses, employ a fusion mechanism in which the distal beta barrels of domain II of the glycoprotein E are inserted into the cellular membrane.


Structure | 1995

Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy.

Jeffrey A. Speir; Sanjeev Munshi; Guoji Wang; Timothy S. Baker; John E. Johnson

BACKGROUND RNA-protein interactions stabilize many viruses and also the nucleoprotein cores of enveloped animal viruses (e.g. retroviruses). The nucleoprotein particles are frequently pleomorphic and generally unstable due to the lack of strong protein-protein interactions in their capsids. Principles governing their structures are unknown because crystals of such nucleoprotein particles that diffract to high resolution have not previously been produced. Cowpea chlorotic mottle virions (CCMV) are typical of particles stabilized by RNA-protein interactions and it has been found that crystals that diffract beyond 4.5 A resolution are difficult to grow. However, we report here the purification of CCMV with an exceptionally mild procedure and the growth of crystals that diffract X-rays to 3.2 A resolution. RESULTS The 3.2 A X-ray structure of native CCMV, an icosahedral (T = 3) RNA plant virus, shows novel quaternary structure interactions based on interwoven carboxyterminal polypeptides that extend from canonical capsid beta-barrel subunits. Additional particle stability is provided by intercapsomere contacts between metal ion mediated carboxyl cages and by protein interactions with regions of ordered RNA. The structure of a metal-free, swollen form of the virus was determined by cryo-electron microscopy and image reconstruction. Modeling of this structure with the X-ray coordinates of the native subunits shows that the 29 A radial expansion is due to electrostatic repulsion at the carboxyl cages and is stopped short of complete disassembly by preservation of interwoven carboxyl termini and protein-RNA contacts. CONCLUSIONS The CCMV capsid displays quaternary structural interactions that are unique compared with previously determined RNA virus structures. The loosely coupled hexamer and pentamer morphological units readily explain their versatile reassembly properties and the pH and metal ion dependent polymorphism observed in the virions. Association of capsomeres through inter-penetrating carboxy-terminal portions of the subunit polypeptides has been previously described only for the DNA tumor viruses, SV40 and polyoma.


Microbiology and Molecular Biology Reviews | 2000

Adding the Third Dimension to Virus Life Cycles: Three-Dimensional Reconstruction of Icosahedral Viruses from Cryo-Electron Micrographs

Timothy S. Baker; Norman H. Olson; Stephen D. Fuller

Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-A) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical.


The EMBO Journal | 2003

Structures of immature flavivirus particles

Ying Zhang; Jeroen Corver; Paul R. Chipman; Wei Zhang; Sergei V. Pletnev; Dagmar Sedlak; Timothy S. Baker; James H. Strauss; Richard J. Kuhn; Michael G. Rossmann

Structures of prM‐containing dengue and yellow fever virus particles were determined to 16 and 25 Å resolution, respectively, by cryoelectron microscopy and image reconstruction techniques. The closely similar structures show 60 icosahedrally organized trimeric spikes on the particle surface. Each spike consists of three prM:E heterodimers, where E is an envelope glycoprotein and prM is the precursor to the membrane protein M. The pre‐peptide components of the prM proteins in each spike cover the fusion peptides at the distal ends of the E glycoproteins in a manner similar to the organization of the glycoproteins in the alphavirus spikes. Each heterodimer is associated with an E and a prM transmembrane density. These transmembrane densities represent either an EE or prMprM antiparallel coiled coil by which each protein spans the membrane twice, leaving the C‐terminus of each protein on the exterior of the viral membrane, consistent with the predicted membrane‐spanning domains of the unprocessed polyprotein.


Cell | 1995

Nucleocapsid and Glycoprotein Organization in an Enveloped Virus

R.Holland Cheng; Richard J. Kuhn; Norman H. Olson; Michael G Rossmann^Hok-Kin Choi; Thomas J. Smith; Timothy S. Baker

Alphaviruses are a group of icosahedral, positive-strand RNA, enveloped viruses. The membrane bilayer, which surrounds the approximately 400 A diameter nucleocapsid, is penetrated by 80 spikes arranged in a T = 4 lattice. Each spike is a trimer of heterodimers consisting of glycoproteins E1 and E2. Cryoelectron microscopy and image reconstruction of Ross River virus showed that the T = 4 quaternary structure of the nucleocapsid consists of pentamer and hexamer clusters of the capsid protein, but not dimers, as have been observed in several crystallographic studies. The E1-E2 heterodimers form one-to-one associations with the nucleocapsid monomers across the lipid bilayer. Knowledge of the atomic structure of the capsid protein and our reconstruction allows us to identify capsid-protein residues that interact with the RNA, the glycoproteins, and adjacent capsid-proteins.


Cell | 1991

Liquid-crystalline, phage-like packing of encapsidated DNA in herpes simplex virus

Frank P. Booy; William W. Newcomb; Benes L. Trus; Jay C. Brown; Timothy S. Baker; Alasdair C. Steven

The organization of DNA within the HSV-1 capsid has been determined by cryoelectron microscopy and image reconstruction. Purified C-capsids, which are fully packaged, were compared with A-capsids, which are empty. Unlike A-capsids, C-capsids show fine striations and punctate arrays with a spacing of approximately 2.6 nm. The packaged DNA forms a uniformly dense ball, extending radially as far as the inner surface of the icosahedral (T = 16) capsid shell, whose structure is essentially identical in A-capsids and C-capsids. Thus we find no evidence for the inner T = 4 shell previously reported by Schrag et al. to be present in C-capsids. Encapsidated HSV-1 DNA closely resembles that previously visualized in bacteriophages T4 and lambda, thus supporting the idea of a close parallelism between the respective assembly pathways of a major family of animal viruses (the herpesviruses) and a major family of bacterial viruses.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus

Narayanasamy Nandhagopal; Alan A. Simpson; James R. Gurnon; Xiadong Yan; Timothy S. Baker; Michael C. Graves; James L. Van Etten; Michael G. Rossmann

Paramecium bursaria Chlorella virus type 1 (PBCV-1) is a very large, icosahedral virus containing an internal membrane enclosed within a glycoprotein coat consisting of pseudohexagonal arrays of trimeric capsomers. Each capsomer is composed of three molecules of the major capsid protein, Vp54, the 2.0-Å resolution structure of which is reported here. Four N-linked and two O-linked glycosylation sites were identified. The N-linked sites are associated with nonstandard amino acid motifs as a result of glycosylation by virus-encoded enzymes. Each monomer of the trimeric structure consists of two eight-stranded, antiparallel β-barrel, “jelly-roll” domains related by a pseudo-sixfold rotation. The fold of the monomer and the pseudo-sixfold symmetry of the capsomer resembles that of the major coat proteins in the double-stranded DNA bacteriophage PRD1 and the double-stranded DNA human adenoviruses, as well as the viral proteins VP2-VP3 of picornaviruses. The structural similarities among these diverse groups of viruses, whose hosts include bacteria, unicellular eukaryotes, plants, and mammals, make it probable that their capsid proteins have evolved from a common ancestor that had already acquired a pseudo-sixfold organization. The trimeric capsid protein structure was used to produce a quasi-atomic model of the 1,900-Å diameter PBCV-1 outer shell, based on fitting of the Vp54 crystal structure into a three-dimensional cryoelectron microscopy image reconstruction of the virus.


Cell | 1998

Assembly of a Tailed Bacterial Virus and Its Genome Release Studied in Three Dimensions

Yizhi Tao; Norman H. Olson; Wei Xu; Dwight L. Anderson; Michael G. Rossmann; Timothy S. Baker

We present the first three-dimensional reconstruction of a prolate, tailed phage, and its empty prohead precursor by cryo-electron microscopy. The head-tail connector, the central component of the DNA packaging machine, is visualized for the first time in situ within the Bacillus subtilis dsDNA phage phi29. The connector, with 12- or 13-fold symmetry, appears to fit loosely into a pentameric vertex of the head, a symmetry mismatch that may be required to rotate the connector to package DNA. The prolate head of phi29 has 10 hexameric units in its cylindrical equatorial region, and 11 pentameric and 20 hexameric units comprise icosahedral end-caps with T=3 quasi-symmetry. Reconstruction of an emptied phage particle shows that the connector and neck/tail assembly undergo significant conformational changes upon ejection of DNA.


Ultramicroscopy | 1978

Reconstruction of glutamine synthetase using computer averaging

Joachim Frank; W. Goldfarb; David Eisenberg; Timothy S. Baker

The axial projection of the glutamine synthetase molecule has been reconstructed from electron micrographs of a stained preparation by using a new method of correlation search and averaging. The average over 50 individual molecules appears as a radial pattern with sixfold symmetry. The handedness evident in the average is attributed to nonuniformity of the negative stain.


Journal of Virology | 2002

Placement of the structural proteins in Sindbis virus.

Wei Zhang; Suchetana Mukhopadhyay; Sergei V. Pletnev; Timothy S. Baker; Richard J. Kuhn; Michael G. Rossmann

ABSTRACT The structure of the lipid-enveloped Sindbis virus has been determined by fitting atomic resolution crystallographic structures of component proteins into an 11-Å resolution cryoelectron microscopy map. The virus has T=4 quasisymmetry elements that are accurately maintained between the external glycoproteins, the transmembrane helical region, and the internal nucleocapsid core. The crystal structure of the E1 glycoprotein was fitted into the cryoelectron microscopy density, in part by using the known carbohydrate positions as restraints. A difference map showed that the E2 glycoprotein was shaped similarly to E1, suggesting a possible common evolutionary origin for these two glycoproteins. The structure shows that the E2 glycoprotein would have to move away from the center of the trimeric spike in order to expose enough viral membrane surface to permit fusion with the cellular membrane during the initial stages of host infection. The well-resolved E1-E2 transmembrane regions form α-helical coiled coils that were consistent with T=4 symmetry. The known structure of the capsid protein was fitted into the density corresponding to the nucleocapsid, revising the structure published earlier.

Collaboration


Dive into the Timothy S. Baker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinghua Tang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Johnson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Yan

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge