Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly A. Soderberg is active.

Publication


Featured researches published by Kelly A. Soderberg.


The New England Journal of Medicine | 2012

Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial

Barton F. Haynes; Peter B. Gilbert; M. Juliana McElrath; Susan Zolla-Pazner; Georgia D. Tomaras; S. Munir Alam; David T. Evans; David C. Montefiori; Chitraporn Karnasuta; Ruengpueng Sutthent; Hua-Xin Liao; Anthony L. DeVico; George K. Lewis; Constance Williams; Abraham Pinter; Youyi Fong; Holly Janes; Allan C. deCamp; Yunda Huang; Mangala Rao; Erik Billings; Nicos Karasavvas; Merlin L. Robb; Viseth Ngauy; Mark S. de Souza; Robert Paris; Guido Ferrari; Robert T. Bailer; Kelly A. Soderberg; Charla Andrews

BACKGROUND In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case-control analysis to identify antibody and cellular immune correlates of infection risk. METHODS In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up. RESULTS Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P=0.02; q=0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P=0.03; q=0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies. CONCLUSIONS This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.


Nature | 2013

Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus

Hua-Xin Liao; Rebecca M. Lynch; Tongqing Zhou; Feng Gao; S. Munir Alam; Scott D. Boyd; Andrew Fire; Krishna M. Roskin; Chaim A. Schramm; Z. F. Zhang; Jiang Zhu; Lawrence Shapiro; Nisc Comparative Sequencing Program; James C. Mullikin; S. Gnanakaran; Peter Hraber; Kevin Wiehe; Garnett Kelsoe; Guang Yang; Shi-Mao Xia; David C. Montefiori; Robert Parks; Krissey E. Lloyd; Richard M. Scearce; Kelly A. Soderberg; Myron S. Cohen; Gift Kamanga; Mark K. Louder; Lillian Tran; Yue Chen

Current human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.


Science | 2013

Influence of HLA-C expression level on HIV control

Richard Apps; Ying Qi; Jonathan M. Carlson; Haoyan Chen; Xiaojiang Gao; Rasmi Thomas; Yuko Yuki; Greg Q. Del Prete; Philip J. R. Goulder; Zabrina L. Brumme; Chanson J. Brumme; M. John; S. Mallal; George W. Nelson; Ronald J. Bosch; David Heckerman; Judy L. Stein; Kelly A. Soderberg; M. Anthony Moody; Thomas N. Denny; Xue Zeng; Jingyuan Fang; Ashley Moffett; Jeffrey D. Lifson; James J. Goedert; Susan Buchbinder; Gregory D. Kirk; Jacques Fellay; Paul J. McLaren; Steven G. Deeks

Thwarting HIV Multiple genome-wide association studies have revealed that human leukocyte antigen (HLA) genes of the major histocompatibility complex locus have the strongest impact on HIV. In particular, a single-nucleotide polymorphism 35 base pairs upstream of HLA-C shows significant association with viral load and protection against HIV. How HLA-C mediates these effects is unknown. Apps et al. (p. 87) now demonstrate that increasing surface expression of HLA-C is associated with reduced viral load and reduced rate of progression to low CD4+ T cell counts in African and European Americans. High HLA-C expression likely promoted improved HIV control through a more effective cytotoxic CD8+ T cell response. In contrast to HIV infection, high HLA-C expression was associated with a higher risk of the inflammatory bowel disease, Crohns disease. Increased levels of human leukocyte antigen C are associated with control of HIV infection but increased susceptibility to Crohn’s disease. A variant upstream of human leukocyte antigen C (HLA-C) shows the most significant genome-wide effect on HIV control in European Americans and is also associated with the level of HLA-C expression. We characterized the differential cell surface expression levels of all common HLA-C allotypes and tested directly for effects of HLA-C expression on outcomes of HIV infection in 5243 individuals. Increasing HLA-C expression was associated with protection against multiple outcomes independently of individual HLA allelic effects in both African and European Americans, regardless of their distinct HLA-C frequencies and linkage relationships with HLA-B and HLA-A. Higher HLA-C expression was correlated with increased likelihood of cytotoxic T lymphocyte responses and frequency of viral escape mutation. In contrast, high HLA-C expression had a deleterious effect in Crohn’s disease, suggesting a broader influence of HLA expression levels in human disease.


PLOS ONE | 2014

Vaccine-Induced IgG Antibodies to V1V2 Regions of Multiple HIV-1 Subtypes Correlate with Decreased Risk of HIV-1 Infection

Susan Zolla-Pazner; Allan C. deCamp; Peter B. Gilbert; Constance Williams; Nicole L. Yates; William T. Williams; Robert Howington; Youyi Fong; Daryl Morris; Kelly A. Soderberg; Carmela Irene; Charles Reichman; Abraham Pinter; Robert Parks; Punnee Pitisuttithum; Jaranit Kaewkungwal; Supachai Rerks-Ngarm; Sorachai Nitayaphan; Charla Andrews; Robert J. O'Connell; Zhi Yong Yang; Gary J. Nabel; Jerome H. Kim; Nelson L. Michael; David C. Montefiori; Hua-Xin Liao; Barton F. Haynes; Georgia D. Tomaras

In the RV144 HIV-1 vaccine efficacy trial, IgG antibody (Ab) binding levels to variable regions 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 were an inverse correlate of risk of HIV-1 infection. To determine if V1V2-specific Abs cross-react with V1V2 from different HIV-1 subtypes, if the nature of the V1V2 antigen used to asses cross-reactivity influenced infection risk, and to identify immune assays for upcoming HIV-1 vaccine efficacy trials, new V1V2-scaffold antigens were designed and tested. Protein scaffold antigens carrying the V1V2 regions from HIV-1 subtypes A, B, C, D or CRF01_AE were assayed in pilot studies, and six were selected to assess cross-reactive Abs in the plasma from the original RV144 case-control cohort (41 infected vaccinees, 205 frequency-matched uninfected vaccinees, and 40 placebo recipients) using ELISA and a binding Ab multiplex assay. IgG levels to these antigens were assessed as correlates of risk in vaccine recipients using weighted logistic regression models. Levels of Abs reactive with subtype A, B, C and CRF01_AE V1V2-scaffold antigens were all significant inverse correlates of risk (p-values of 0.0008–0.05; estimated odds ratios of 0.53–0.68 per 1 standard deviation increase). Thus, levels of vaccine-induced IgG Abs recognizing V1V2 regions from multiple HIV-1 subtypes, and presented on different scaffolds, constitute inverse correlates of risk for HIV-1 infection in the RV144 vaccine trial. The V1V2 antigens provide a link between RV144 and upcoming HIV-1 vaccine trials, and identify reagents and methods for evaluating V1V2 Abs as possible correlates of protection against HIV-1 infection. Trial Registration ClinicalTrials.gov NCT00223080


PLOS Pathogens | 2011

Recurrent Signature Patterns in HIV-1 B Clade Envelope Glycoproteins Associated with either Early or Chronic Infections

S. Gnanakaran; Tanmoy Bhattacharya; Marcus Daniels; Brandon F. Keele; Peter Hraber; Alan S. Lapedes; Tongye Shen; Brian Gaschen; Mohan Krishnamoorthy; Hui-Hui Li; Julie M. Decker; Jesus F. Salazar-Gonzalez; Shuyi Wang; Chunlai Jiang; Feng Gao; Ronald Swanstrom; Jeffrey A. Anderson; Li-Hua Ping; Myron S. Cohen; Martin Markowitz; Paul A. Goepfert; Michael S. Saag; Joseph J. Eron; Charles B. Hicks; William A. Blattner; Georgia D. Tomaras; Mohammed Asmal; Norman L. Letvin; Peter B. Gilbert; Allan C. deCamp

Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413–415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response.


Journal of Virology | 2012

The Development of CD4 Binding Site Antibodies During HIV-1 Infection

Rebecca M. Lynch; Lillian Tran; Mark K. Louder; Stefan D. Schmidt; Myron S. Cohen; Rebecca DerSimonian; Zelda Euler; Elin S. Gray; Salim Safurdeen. Abdool Karim; Jennifer L. Kirchherr; David C. Montefiori; Sengeziwe Sibeko; Kelly A. Soderberg; Georgia D. Tomaras; Zhi-Yong Yang; Gary J. Nabel; Hanneke Schuitemaker; Lynn Morris; Barton F. Haynes; John R. Mascola

ABSTRACT Broadly neutralizing antibodies to the CD4 binding site (CD4bs) of gp120 are generated by some HIV-1-infected individuals, but little is known about the prevalence and evolution of this antibody response during the course of HIV-1 infection. We analyzed the sera of 113 HIV-1 seroconverters from three cohorts for binding to a panel of gp120 core proteins and their corresponding CD4bs knockout mutants. Among sera collected between 99 and 258 weeks post-HIV-1 infection, 88% contained antibodies to the CD4bs and 47% contained antibodies to resurfaced stabilized core (RSC) probes that react preferentially with broadly neutralizing CD4bs antibodies (BNCD4), such as monoclonal antibodies (MAbs) VRC01 and VRC-CH31. Analysis of longitudinal serum samples from a subset of 18 subjects revealed that CD4bs antibodies to gp120 arose within the first 4 to 16 weeks of infection, while the development of RSC-reactive antibodies was more varied, occurring between 10 and 152 weeks post-HIV-1 infection. Despite the presence of these antibodies, serum neutralization mediated by RSC-reactive antibodies was detected in sera from only a few donors infected for more than 3 years. Thus, CD4bs antibodies that bind a VRC01-like epitope are often induced during HIV-1 infection, but the level and potency required to mediate serum neutralization may take years to develop. An improved understanding of the immunological factors associated with the development and maturation of neutralizing CD4bs antibodies during HIV-1 infection may provide insights into the requirements for eliciting this response by vaccination.


Journal of Virology | 2012

A novel variant marking HLA-DP expression levels predicts recovery from hepatitis B virus infection

Rasmi Thomas; Chloe L. Thio; Richard Apps; Ying Qi; Xiaojiang Gao; Darlene Marti; Judy L. Stein; Kelly A. Soderberg; M. Anthony Moody; James J. Goedert; Gregory D. Kirk; W. Keith Hoots; Steven M. Wolinsky; Mary Carrington

ABSTRACT Variants near the HLA-DP gene show the strongest genome-wide association with chronic hepatitis B virus (HBV) infection and HBV recovery/persistence in Asians. To test the effect of the HLA-DP region on outcomes to HBV infection, we sequenced the polymorphic HLA-DPB1 and DPA1 coding exons and the corresponding 3′ untranslated regions (3′UTRs) in 662 individuals of European-American and African-American ancestry. The genome-wide association study (GWAS) variant (rs9277535; 550A/G) in the 3′UTR of the HLA-DPB1 gene that associated most significantly with chronic hepatitis B and outcomes to HBV infection in Asians had a marginal effect on HBV recovery in our European- and African-American samples (odds ratio [OR] = 0.39, P = 0.01, combined ethnic groups). However, we identified a novel variant in the HLA-DPB1 3′UTR region, 496A/G (rs9277534), which associated very significantly with HBV recovery in both European and African-American populations (OR = 0.37, P = 0.0001, combined ethnic groups). The 496A/G variant distinguishes the most protective HLA-DPB1 allele (DPB1*04:01) from the most susceptible (DPB1*01:01), whereas 550A/G does not. 496A/G has a stronger effect than any individual HLA-DPB1 or DPA1 allele and any other HLA alleles that showed an association with HBV recovery in our European-American cohort. The 496GG genotype, which confers recessive susceptibility to HBV persistence, also associates in a recessive manner with significantly higher levels of HLA-DP surface protein and transcript level expression in healthy donors, suggesting that differences in expression of HLA-DP may increase the risk of persistent HBV infection.


PLOS Pathogens | 2015

Human non-neutralizing HIV-1 envelope monoclonal antibodies limit the number of founder viruses during SHIV mucosal infection in rhesus macaques

Sampa Santra; Georgia D. Tomaras; Ranjit Warrier; Nathan I. Nicely; Hua-Xin Liao; Justin Pollara; Pinghuang Liu; S. Munir Alam; Ruijun Zhang; Sarah L. Cocklin; Xiaoying Shen; Ryan Duffy; Shi-Mao Xia; Robert J. Schutte; Charles W. Pemble; S. Moses Dennison; Hui Li; Andrew Chao; Kora Vidnovic; Abbey Evans; Katja Klein; Amit Kumar; James E. Robinson; Gary Landucci; Donald N. Forthal; David C. Montefiori; Jaranit Kaewkungwal; Sorachai Nitayaphan; Punnee Pitisuttithum; Supachai Rerks-Ngarm

HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.


Journal of Clinical Investigation | 2015

Dual-Affinity Re-Targeting proteins direct T cell–mediated cytolysis of latently HIV-infected cells

Julia A.M. Sung; Joy Pickeral; Liqin Liu; Sherry A. Stanfield-Oakley; Chia Ying Kao Lam; Carolina Garrido; Justin Pollara; Celia C. LaBranche; Mattia Bonsignori; M. Anthony Moody; Yinhua Yang; Robert Parks; Nancie M. Archin; Brigitte Allard; Jennifer L. Kirchherr; Joann D. Kuruc; Myron S. Cohen; Christina Ochsenbauer; Kelly A. Soderberg; Hua-Xin Liao; David C. Montefiori; Paul A. Moore; Syd Johnson; Scott Koenig; Barton F. Haynes; Jeffrey L. Nordstrom; David M. Margolis; Guido Ferrari

Enhancement of HIV-specific immunity is likely required to eliminate latent HIV infection. Here, we have developed an immunotherapeutic modality aimed to improve T cell-mediated clearance of HIV-1-infected cells. Specifically, we employed Dual-Affinity Re-Targeting (DART) proteins, which are bispecific, antibody-based molecules that can bind 2 distinct cell-surface molecules simultaneously. We designed DARTs with a monovalent HIV-1 envelope-binding (Env-binding) arm that was derived from broadly binding, antibody-dependent cellular cytotoxicity-mediating antibodies known to bind to HIV-infected target cells coupled to a monovalent CD3 binding arm designed to engage cytolytic effector T cells (referred to as HIVxCD3 DARTs). Thus, these DARTs redirected polyclonal T cells to specifically engage with and kill Env-expressing cells, including CD4+ T cells infected with different HIV-1 subtypes, thereby obviating the requirement for HIV-specific immunity. Using lymphocytes from patients on suppressive antiretroviral therapy (ART), we demonstrated that DARTs mediate CD8+ T cell clearance of CD4+ T cells that are superinfected with the HIV-1 strain JR-CSF or infected with autologous reservoir viruses isolated from HIV-infected-patient resting CD4+ T cells. Moreover, DARTs mediated CD8+ T cell clearance of HIV from resting CD4+ T cell cultures following induction of latent virus expression. Combined with HIV latency reversing agents, HIVxCD3 DARTs have the potential to be effective immunotherapeutic agents to clear latent HIV-1 reservoirs in HIV-infected individuals.


Cell Host & Microbe | 2014

HIV-1 Envelope gp41 Antibodies Can Originate from Terminal Ileum B Cells that Share Cross-Reactivity with Commensal Bacteria

Ashley M. Trama; M. Anthony Moody; S. Munir Alam; Frederick H. Jaeger; Bradley Lockwood; Robert Parks; Krissey E. Lloyd; Christina Stolarchuk; Richard M. Scearce; Andrew Foulger; Dawn J. Marshall; John F. Whitesides; Thomas L. Jeffries; Kevin Wiehe; Lynn Morris; Bronwen E. Lambson; Kelly A. Soderberg; Kwan-Ki Hwang; Georgia D. Tomaras; Nathan Vandergrift; Katherine J. L. Jackson; Krishna M. Roskin; Scott D. Boyd; Thomas B. Kepler; Hua-Xin Liao; Barton F. Haynes

Monoclonal antibodies derived from blood plasma cells of acute HIV-1-infected individuals are predominantly targeted to the HIV Env gp41 and cross-reactive with commensal bacteria. To understand this phenomenon, we examined anti-HIV responses in ileum B cells using recombinant antibody technology and probed their relationship to commensal bacteria. The dominant ileum B cell response was to Env gp41. Remarkably, a majority (82%) of the ileum anti-gp41 antibodies cross-reacted with commensal bacteria, and of those, 43% showed non-HIV-1 antigen polyreactivity. Pyrosequencing revealed shared HIV-1 antibody clonal lineages between ileum and blood. Mutated immunoglobulin G antibodies cross-reactive with both Env gp41 and microbiota could also be isolated from the ileum of HIV-1 uninfected individuals. Thus, the gp41 commensal bacterial antigen cross-reactive antibodies originate in the intestine, and the gp41 Env response in HIV-1 infection can be derived from a preinfection memory B cell pool triggered by commensal bacteria that cross-react with Env.

Collaboration


Dive into the Kelly A. Soderberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myron S. Cohen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua-Xin Liao

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge