Kelly E. Radziwon
State University of New York System
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kelly E. Radziwon.
eLife | 2015
Yu-Chen Chen; Xiaowei Li; Lijie Liu; Jian Wang; Chun-Qiang Lu; Ming-Ming Yang; Yun Jiao; Feng-Chao Zang; Kelly E. Radziwon; Guang-Di Chen; Wei Sun; Vijaya Prakash Krishnan Muthaiah; Richard Salvi; Gao-Jun Teng
Hearing loss often triggers an inescapable buzz (tinnitus) and causes everyday sounds to become intolerably loud (hyperacusis), but exactly where and how this occurs in the brain is unknown. To identify the neural substrate for these debilitating disorders, we induced both tinnitus and hyperacusis with an ototoxic drug (salicylate) and used behavioral, electrophysiological, and functional magnetic resonance imaging (fMRI) techniques to identify the tinnitus–hyperacusis network. Salicylate depressed the neural output of the cochlea, but vigorously amplified sound-evoked neural responses in the amygdala, medial geniculate, and auditory cortex. Resting-state fMRI revealed hyperactivity in an auditory network composed of inferior colliculus, medial geniculate, and auditory cortex with side branches to cerebellum, amygdala, and reticular formation. Functional connectivity revealed enhanced coupling within the auditory network and segments of the auditory network and cerebellum, reticular formation, amygdala, and hippocampus. A testable model accounting for distress, arousal, and gating of tinnitus and hyperacusis is proposed. DOI: http://dx.doi.org/10.7554/eLife.06576.001
PLOS ONE | 2014
Erikson G. Neilans; David P. Holfoth; Kelly E. Radziwon; Christine V. Portfors; Micheal L. Dent
The function of ultrasonic vocalizations (USVs) produced by mice (Mus musculus) is a topic of broad interest to many researchers. These USVs differ widely in spectrotemporal characteristics, suggesting different categories of vocalizations, although this has never been behaviorally demonstrated. Although electrophysiological studies indicate that neurons can discriminate among vocalizations at the level of the auditory midbrain, perceptual acuity for vocalizations has yet to be determined. Here, we trained CBA/CaJ mice using operant conditioning to discriminate between different vocalizations and between a spectrotemporally modified vocalization and its original version. Mice were able to discriminate between vocalization types and between manipulated vocalizations, with performance negatively correlating with spectrotemporal similarity. That is, discrimination performance was higher for dissimilar vocalizations and much lower for similar vocalizations. The behavioral data match previous neurophysiological results in the inferior colliculus (IC), using the same stimuli. These findings suggest that the different vocalizations could carry different meanings for the mice. Furthermore, the finding that behavioral discrimination matched neural discrimination in the IC suggests that the IC plays an important role in the perceptual discrimination of vocalizations.
Neural Plasticity | 2014
Guang-Di Chen; Kelly E. Radziwon; Nina Kashanian; Senthilvelan Manohar; Richard Salvi
Previous studies have shown that sodium salicylate (SS) activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus). The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus.
Frontiers in Neurology | 2014
Sarah H. Hayes; Kelly E. Radziwon; Daniel Stolzberg; Richard Salvi
The phantom perception of tinnitus and reduced sound-level tolerance associated with hyperacusis have a high comorbidity and can be debilitating conditions for which there are no widely accepted treatments. One factor limiting the development of treatments for tinnitus and hyperacusis is the lack of reliable animal behavioral models of these disorders. Therefore, the purpose of this review is to highlight the current animal models of tinnitus and hyperacusis, and to detail the advantages and disadvantages of each paradigm. To date, this is the first review to include models of both tinnitus and hyperacusis.
Journal of Neuroscience Methods | 2013
Daniel Stolzberg; Sarah H. Hayes; Nina Kashanian; Kelly E. Radziwon; Richard Salvi; Brian L. Allman
BACKGROUND Human magneto/electrophysiology studies suggest that the phantom sound of tinnitus arises from spontaneous oscillatory neural activity in auditory cortex; however, in animal models, behavioral techniques suitable for testing this hypothesis in combination with electrophysiology recordings have yet to be evaluated. While electrophysiological studies of tinnitus have been reported in passive, awake animals, these studies fail to control for attentional mechanisms likely to play a role in the perception of tinnitus. NEW METHOD A novel appetitive operant conditioning, two-alternative identification task was developed for detecting acute tinnitus in rats. The procedure optimizes conditions for simultaneously recording oscillatory neural activity while controlling for the attentional state of the animal. RESULTS Tinnitus was detected in six of seven rats following systemic injection with sodium salicylate (200mg/kg IP), a known inducer of tinnitus. Analysis of ongoing local field potentials recorded from chronically implanted electrodes in auditory cortex of a rat reporting tinnitus revealed changes in the spectrum of ongoing neural activity. Comparison with existing method(s): Existing tinnitus-detection methods were not explicitly designed for the simultaneous recording of neural activity. The behavioral method reported here is the first to provide the conditions necessary for obtaining these recordings in chronically implanted rats. CONCLUSIONS The behavioral assay presented here will facilitate research into the neural mechanisms of tinnitus by allowing researchers to compare the electrophysiological data in animals with confirmed tinnitus.
Frontiers in Neurology | 2015
Kelly E. Radziwon; Daniel Stolzberg; Maxwell Urban; Rachael A. Bowler; Richard Salvi
To test the “tinnitus gap-filling” hypothesis in an animal psychoacoustic paradigm, rats were tested using a go/no-go operant gap detection task in which silent intervals of various durations were embedded within a continuous noise. Gap detection thresholds were measured before and after treatment with a dose of sodium salicylate (200 mg/kg) that reliably induces tinnitus in rats. Noise-burst detection thresholds were also measured to document the amount of hearing loss and aid in interpreting the gap detection results. As in the previous human psychophysical experiments, salicylate had little or no effect on gap thresholds measured in broadband noise presented at high-stimulus levels (30–60 dB SPL); gap detection thresholds were always 10 ms or less. Salicylate also did not affect gap thresholds presented in narrowband noise at 60 dB SPL. Therefore, rats treated with a dose of salicylate that reliably induces tinnitus have no difficulty detecting silent gaps as long as the noise in which they are embedded is clearly audible.
Frontiers in Neuroscience | 2017
Richard Salvi; Wei Sun; Dalian Ding; Guang-Di Chen; Edward Lobarinas; Jian Wang; Kelly E. Radziwon; Benjamin D. Auerbach
There are three times as many outer hair cells (OHC) as inner hair cells (IHC), yet IHC transmit virtually all acoustic information to the brain as they synapse with 90–95% of type I auditory nerve fibers. Here we review a comprehensive series of experiments aimed at determining how loss of the IHC/type I system affects hearing by selectively destroying these cells in chinchillas using the ototoxic anti-cancer agent carboplatin. Eliminating IHC/type I neurons has no effect on distortion product otoacoustic emission or the cochlear microphonic potential generated by OHC; however, it greatly reduces the summating potential produced by IHC and the compound action potential (CAP) generated by type I neurons. Remarkably, responses from remaining auditory nerve fibers maintain sharp tuning and low thresholds despite innervating regions of the cochlea with ~80% IHC loss. Moreover, chinchillas with large IHC lesions have surprisingly normal thresholds in quiet until IHC losses exceeded 80%, suggesting that only a few IHC are needed to detect sounds in quiet. However, behavioral thresholds in broadband noise are elevated significantly and tone-in-narrow band noise masking patterns exhibit greater remote masking. These results suggest the auditory system is able to compensate for considerable loss of IHC/type I neurons in quiet but not in difficult listening conditions. How does the auditory brain deal with the drastic loss of cochlear input? Recordings from the inferior colliculus found a relatively small decline in sound-evoked activity despite a large decrease in CAP amplitude after IHC lesion. Paradoxically, sound-evoked responses are generally larger than normal in the auditory cortex, indicative of increased central gain. This gain enhancement in the auditory cortex is associated with decreased GABA-mediated inhibition. These results suggest that when the neural output of the cochlea is reduced, the central auditory system compensates by turning up its gain so that weak signals once again become comfortably loud. While this gain enhancement is able to restore normal hearing under quiet conditions, it may not adequately compensate for peripheral dysfunction in more complex sound environments. In addition, excessive gain increases may convert recruitment into the debilitating condition known as hyperacusis.
Behavioural Processes | 2014
Kelly E. Radziwon; Micheal L. Dent
Mice are emerging as an important behavioral model for studies of auditory perception and acoustic communication. These mammals frequently produce ultrasonic vocalizations, although the details of how these vocalizations are used for communication are not entirely understood. An important step in determining how they might be differentiating their calls is to measure discrimination and identification of the dimensions of various acoustic stimuli. Here, behavioral operant conditioning methods were employed to assess frequency difference limens for pure tones. We found that their thresholds were similar to those in other rodents but higher than in humans. We also asked mice, in an identification paradigm, whether they would use frequency or duration differences to classify stimuli varying on those two dimensions. We found that the mice classified the stimuli based on frequency rather than duration.
Hearing Research | 2017
Yu-Chen Chen; Guang-Di Chen; Benjamin D. Auerbach; Senthilvelan Manohar; Kelly E. Radziwon; Richard Salvi
ABSTRACT Tinnitus and hyperacusis are common and potentially serious hearing disorders associated with noise‐, age‐ or drug‐induced hearing loss. Accumulating evidence suggests that tinnitus and hyperacusis are linked to excessive neural activity in a distributed brain network that not only includes the central auditory pathway, but also brain regions involved in arousal, emotion, stress and motor control. Here we examine electrophysiological changes in two novel non‐auditory areas implicated in tinnitus and hyperacusis: the caudal pontine reticular nucleus (PnC), involved in arousal, and the paraflocculus lobe of the cerebellum (PFL), implicated in head‐eye coordination and gating tinnitus and we measure the changes in corticosterone stress hormone levels. Using the salicylate‐induced model of tinnitus and hyperacusis, we found that long‐latency (>10 ms) sound‐evoked response components in both the brain regions were significantly enhanced after salicylate administration, while the short‐latency responses were reduced, likely reflecting cochlear hearing loss. These results are consistent with the central gain model of tinnitus and hyperacusis, which proposes that these disorders arise from the amplification of neural activity in central auditory pathway plus other regions linked to arousal, emotion, tinnitus gating and motor control. Finally, we demonstrate that salicylate results in an increase in corticosterone level in a dose‐dependent manner consistent with the notion that stress may interact with hearing loss in tinnitus and hyperacusis development. This increased stress response has the potential to have wide‐ranging effects on the central nervous system and may therefore contribute to brain‐wide changes in neural activity. Graphical abstract Figure. No Caption available. HighlightsSalicylate enhanced auditory response of the cerebellar paraflocculus.Salicylate enhanced auditory response of the reticular formation.While the late response component was enhanced the early response was reduced.Salicylate enhanced serum corticosterone level.The physiological changes and the stress hormone increase may be involved in tinnitus and hyperacusis.
Journal of the Acoustical Society of America | 2011
Kelly E. Radziwon; Thomas E. Welch; Jarrod P. Cone; Micheal L. Dent
The present study examined auditory distance perception cues in a non-territorial songbird, the zebra finch (Taeniopygia guttata), and in a non-songbird, the budgerigar (Melopsittacus undulatus). Using operant conditioning procedures, three zebra finches and three budgerigars were trained to identify 1- (Near) and 75-m (Far) recordings of three budgerigar contact calls, one male zebra finch song, and one female zebra finch call. Once the birds were trained on these endpoint stimuli, other stimuli were introduced into the operant task. These stimuli included recordings at intermediate distances and artificially altered stimuli simulating changes in overall amplitude, high-frequency attenuation, reverberation, and all three cues combined. By examining distance cues (amplitude, high-frequency attenuation, and reverberation) separately, this study sought to determine which cue was the most salient for the birds. The results suggest that both species could scale the stimuli on a continuum from Near to Far and that amplitude was the most important cue for these birds in auditory distance perception, as in humans and other animals.