Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly M. Brunt is active.

Publication


Featured researches published by Kelly M. Brunt.


Annals of Glaciology | 2010

Mapping the grounding zone of the Ross Ice Shelf, Antarctica, using ICESat laser altimetry

Kelly M. Brunt; Helen Amanda Fricker; Laurie Padman; Theodore A. Scambos; Shad O'Neel

Abstract We use laser altimetry from the Ice, Cloud, and land Elevation Satellite (ICESat) to map the grounding zone (GZ) of the Ross Ice Shelf, Antarctica, at 491 locations where ICESat tracks cross the grounding line (GL). Ice flexure in the GZ occurs as the ice shelf responds to short-term sea-level changes due primarily to tides. ICESat repeat-track analysis can be used to detect this region of flexure since each repeated pass is acquired at a different tidal phase; the technique provides estimates for both the landward limit of flexure and the point where the ice becomes hydrostatically balanced. We find that the ICESat-derived landward limits of tidal flexure are, in many places, offset by several km (and up to ∼60km) from the GL mapped previously using other satellite methods. We discuss the reasons why different mapping methods lead to different GL estimates, including: instrument limitations; variability in the surface topographic structure of the GZ; and the presence of ice plains. We conclude that reliable and accurate mapping of the GL is most likely to be achieved when based on synthesis of several satellite datasets.


Antarctic Science | 2009

Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS and ICESat

Helen Amanda Fricker; R Coleman; Laurie Padman; Theodore A. Scambos; J. A. Bohlander; Kelly M. Brunt

Abstract We use a combination of satellite techniques (interferometric synthetic aperture radar (InSAR), visible-band imagery, and repeat-track laser altimetry) to develop a benchmark map for the Amery Ice Shelf (AIS) grounding zone (GZ), including its islands and ice rises. The break-in-slope, as an indirect estimate of grounding line location, was mapped for the entire AIS. We have also mapped ∼55% of the landward edge and ∼30% of the seaward edge of the ice shelf flexure boundary for the AIS perimeter. Vertical ice motion from Global Positioning System receivers confirms the location of the satellite-derived GZ in two regions. Our map redefines the extent of floating ice in the south-western AIS and identifies several previously unmapped grounded regions, improving our understanding of the stresses supporting the current dynamical state of the ice shelf. Finally, we identify three along-flow channels in the ice shelf basal topography, approximately 10 km apart, 1.5 km wide and 300–500 m deep, near the southern GZ. These channels, which form at the suture zones between ice streams, may represent zones of potential weakness in the ice shelf and may influence sub-ice-shelf ocean circulation.


Journal of Glaciology | 2008

Tabular iceberg collisions within the coastal regime

Douglas R. MacAyeal; M. H. Okal; Jonathan E. Thom; Kelly M. Brunt; Young-Jin Kim; Andrew K. Bliss

During 2000-07, five giant icebergs (B15A, B15J, B15K, C16 and C25) adrift in the south- western Ross Sea, Antarctica, were instrumented with global positioning system (GPS) receivers and other instruments to monitor their behavior in the near-coastal environment. The measurements show that collision processes can strongly influence iceberg behavior and delay their progress in drifting to the open ocean. Collisions appear to have been a dominant control on the movement of B15A, the largest of the icebergs, during the 4-year period it gyrated within the limited confines of Ross Island, the fixed Ross Ice Shelf and grounded C16. Iceberg interactions in the near-coastal regime are largely driven by ocean tidal effects which determine the magnitude of forces generated during collision and break-up events. Estimates of forces derived from the observed drift trajectories during the iceberg-collision- induced calving of iceberg C19 from the Ross Ice Shelf, during the iceberg-induced break-off of the tip of the Drygalski Ice Tongue and the break-up of B15A provide a crude estimate of the stress scale involved in iceberg calving. Considering the total area the vertical face of new rifts created in the calving or break-up process, and not accounting for local stress amplification near rift tips, this estimated stress scale is 10 4 Pa.


Journal of Glaciology | 2011

Antarctic ice-shelf calving triggered by the Honshu (Japan) earthquake and tsunami, March 2011

Kelly M. Brunt; Emile A. Okal; Douglas R. MacAyeal

We use European Space Agency Envisat data to present the first observational evidence that a Northern Hemisphere tsunami triggered Antarctic ice-shelf calving more than 13 000 km away. The Honshu tsunami of 11 March 2011 traversed the Pacific Ocean in 46 years. This event further illustrates the growing evidence of ocean-wave impact on Antarctic calving and emphasizes the teleconnection between the Antarctic ice sheet and events as far away as the Northern Hemisphere.


Journal of Glaciology | 2011

Analysis of ice plains of the Filchner–Ronne Ice Shelf, Antarctica, using ICESat laser altimetry

Kelly M. Brunt; Helen Amanda Fricker; Laurie Padman

We use repeat-track laser altimeter data from the Ice, Cloud and land Elevation Satellite (ICESat) to map the grounding zone (GZ) of the Filchner–Ronne Ice Shelf, Antarctica. Ice flexure in the GZ occurs as the ice shelf responds to ocean-height changes due primarily to tides. We have identified three ‘ice plains’, regions of low surface slope near the GZ where the ice is close to hydrostatic equilibrium: one on Institute Ice Stream; another to its east; and another west of Foundation Ice Stream. The vertical information from repeated ICESat tracks enables us to study the topography, state of flotation and flexure characteristics across these features. In regions of ephemeral grounding, tidal migration of the grounding line allows us to estimate bed slope ( 1–2 10). From these studies we develop a classification scheme for ice plains, expressed in terms of the evolution, or ‘life cycle’, of these features. A lightly grounded ice plain progresses to a state of ephemeral grounding as the ice sheet thins near the GZ. Once sufficient thinning has occurred, the ice plain becomes a fully floating, relict ice plain with an undulated surface topography similar to that of lightly grounded ice; we expect viscous relaxation to a smooth ice-shelf surface to occur over a timescale of decades. Our improved insight into ice-plain evolution suggests added complexity in modeling ice in the vicinity of the GZ, and a role for ice-plain observations as a guide to relatively rapid changes in ice-


Journal of Glaciology | 2010

Flow of the Ross Ice Shelf, Antarctica, is modulated by the ocean tide

Kelly M. Brunt; Matt A. King; Helen Amanda Fricker; Douglas R. MacAyeal

The ice streams feeding the Ross Ice Shelf, Antarctica, have large tidally modulated (sinusoidal and stick-slip) flow, but the interaction with the ice shelf is poorly understood. We show that the flow of the Ross Ice Shelf front, up to ~650 km from the ice streams, exhibits smooth, sinusoidal motions corresponding to tidal modulation. These observations suggest a possible linking of the ice shelf with the ice streams to form a unified system that responds to small perturbations in stresses associated with ocean tides. If this is the case, the presence of the sinusoidal motion but the absence of stick-slip motion suggests there is damping of very high-frequency signals. The dissimilar signatures of the motions observed in the ice streams and at the front of the ice shelf present challenges to model development aimed at understanding the dynamics of coupled ice-stream/ice-shelf flow and the movement of ice across grounding lines.


Annals of Glaciology | 2006

Observations of unusual fast-ice conditions in the southwest Ross Sea, Antarctica: preliminary analysis of iceberg and storminess effects

Kelly M. Brunt; Olga Sergienko; Douglas R. MacAyeal

Abstract Massive tabular icebergs (∽1000km2 surface area, ∽1011 kg mass) arrived in the southwest Ross Sea in early 2001 where they remained relatively immobile for the next 4 years. During the period of their presence, extensive landfast sea ice (fast ice) waxed and waned along the Victoria Land coast, with maximum coverage exceeding typical coverage prior to the arrival of the icebergs by a factor of 5. The purposes of this study are to determine (1) whether the extensive ‘iceberg blockade’ extending from Ross Island to Drygalski Ice Tongue was indeed, as intuition suggests, responsible for the unusual fast-ice conditions, and (2) how storm frequency, intensity and seasonal timing may have mitigated the effects of the icebergs. Our simple analysis of glaciological and atmospheric conditions observed during 2001–05 suggests that iceberg movement alone is not sufficient to explain fast-ice variability; and, in fact, it is the detailed interplay between storms and iceberg location that determine this variability.


IEEE Geoscience and Remote Sensing Letters | 2014

Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission

Kelly M. Brunt; Thomas Neumann; Kaitlin M. Walsh; Thorsten Markus

The greatest changes in elevation in Greenland and Antarctica are happening along the margins of the ice sheets where the surface frequently has significant slopes. For this reason, the upcoming Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission utilizes pairs of laser altimeter beams that are perpendicular to the flight direction in order to extract slope information in addition to elevation. The Multiple Altimeter Beam Experimental Lidar (MABEL) is a high-altitude airborne laser altimeter designed as a simulator for ICESat-2. The MABEL design uses multiple beams at fixed angles and allows for local slope determination. Here, we present local slopes as determined by MABEL and compare them to those determined by the Airborne Topographic Mapper (ATM) over the same flight lines in Greenland. We make these comparisons with consideration for the planned ICESat-2 beam geometry. Results indicate that the mean slope residuals between MABEL and ATM remain small ( 0.05 °) through a wide range of localized slopes using ICESat-2 beam geometry. Furthermore, when MABEL data are subsampled by a factor of 4 to mimic the planned ICESat-2 transmit-energy configuration, the results are indistinguishable from the full-data-rate analysis. Results from MABEL suggest that ICESat-2 beam geometry and transmit-energy configuration are appropriate for the determination of slope on ~ 90-m spatial scales, a measurement that will be fundamental to deconvolving the effects of surface slope from the ice-sheet surface change derived from ICESat-2.


Annals of Glaciology | 2015

Sea-Ice Freeboard Retrieval Using Digital Photon-Counting Laser Altimetry

Sinead L. Farrell; Kelly M. Brunt; Julia M. Ruth; John M. Kuhn; Laurence N. Connor; Kaitlin M. Walsh

Abstract Airborne and spaceborne altimeters provide measurements of sea-ice elevation, from which sea-ice freeboard and thickness may be derived. Observations of the Arctic ice pack by satellite altimeters indicate a significant decline in ice thickness, and volume, over the last decade. NASA’s Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key sea-ice observations through the end of this decade. An airborne simulator for ICESat-2, the Multiple Altimeter Beam Experimental Lidar (MABEL), has been deployed to gather pre-launch data for mission development. We present an analysis of MABEL data gathered over sea ice in the Greenland Sea and assess the capabilities of photon-counting techniques for sea-ice freeboard retrieval. We compare freeboard estimates in the marginal ice zone derived from MABEL photon-counting data with coincident data collected by a conventional airborne laser altimeter. We find that freeboard estimates agree to within 0.03 m in the areas where sea-ice floes were interspersed with wide leads, and to within 0.07 m elsewhere. MABEL data may also be used to infer sea-ice thickness, and when compared with coincident but independent ice thickness estimates, MABEL ice thicknesses agreed to within 0.65 m or better.


Journal of Coastal Research | 2016

Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL)

Michael F. Jasinski; Jeremy Stoll; William B. Cook; Michael Ondrusek; Eric Stengel; Kelly M. Brunt

ABSTRACT Jasinski, M.; Stoll, J.; Cook, W.; Ondrusek, M.; Stengel, E., and Brunt, K., 2016. Inland and near-shore water profiles derived from the high-altitude Multiple Altimeter Beam Experiemental Lidar (MABEL). In: Brock, J.C.; Gesch, D.B.; Parrish, C.E.; Rogers, J.N., and Wright, C.W. (eds.), Advances in Topobathymetric Mapping, Models, and Applications. Journal of Coastal Research, Special Issue, No. 76, pp. 44–55. Coconut Creek (Florida), ISSN 0749-0208. The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532-nm laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in ice caps, sea ice, and vegetation, the polar-orbiting satellite will observe global surface water during its designed three-year life span, including inland water bodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype, the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high-altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the datasets of three MABEL transects observed from 20 km above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 km in length and included the middle Chesapeake Bay, the near-shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABELs high capability for retrieving surface water height statistics with a mean height precision of approximately 5–7 cm per 100-m segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR0, were observed over a range of 1.3 to 9.3 m, depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when the solar background rate was low. Near-shore bottom reflectance was detected only at the Lake Mead site down to a maximum of 10 m under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest that the feasibility of retrieving operational surface water height statistics from space-based photon counting systems such as ATLAS is very high for resolutions down to about 100 m, even in partly cloudy conditions. The capability to observe subsurface backscatter profiles is achievable but requires much longer transects of several hundreds of meters.

Collaboration


Dive into the Kelly M. Brunt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Neumann

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Thorsten Markus

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William B. Cook

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

David J. Harding

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Jonathan E. Thom

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kaitlin M. Walsh

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge