Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly M. Lohr is active.

Publication


Featured researches published by Kelly M. Lohr.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo

Kelly M. Lohr; Alison I. Bernstein; Kristen A. Stout; Amy R. Dunn; Carlos R. Lazo; Shawn P. Alter; Minzheng Wang; Yingjie Li; Xueliang Fan; Ellen J. Hess; Hong Yi; Laura M. Vecchio; David S. Goldstein; Thomas S. Guillot; Ali Salahpour; Gary W. Miller

Significance Several therapeutic strategies have been used to enhance monoamine neurotransmitter signaling. However, many of these interventions have deleterious side effects or lose effectiveness due to off-target actions and system feedback. These undesirable consequences likely occur because of temporal dysregulation of neurotransmitter release and uptake. We demonstrate that increasing vesicular packaging enhances dopamine neurotransmission without this signaling disruption. Mice with elevated vesicular monoamine transporter display increased dopamine release, improved outcomes on anxiety and depressive behaviors, enhanced locomotion, and protection from a Parkinson disease-related neurotoxic insult. The malleable nature of the dopamine vesicle suggests that interventions aimed at enhancing vesicle filling may be of therapeutic benefit. Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease.


European Journal of Neuroscience | 2017

Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease

Kelly M. Lohr; Shababa T. Masoud; Ali Salahpour; Gary W. Miller

Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move the transmitter efficiently throughout the neuron. Accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT‐KO, VMAT2‐KO, VMAT2‐deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT‐tg, VMAT2‐HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here, we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine.


Human Molecular Genetics | 2015

Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression

Guoxiang Liu; Carmelo Sgobio; Xing-Long Gu; Lixin Sun; Xian Lin; Jia Yu; Loukia Parisiadou; Chengsong Xie; Namratha Sastry; Jinhui Ding; Kelly M. Lohr; Gary W. Miller; Yolanda Mateo; David M. Lovinger; Huaibin Cai

Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinsons disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.


ACS Chemical Neuroscience | 2015

Increased Vesicular Monoamine Transporter 2 (VMAT2; Slc18a2) Protects against Methamphetamine Toxicity

Kelly M. Lohr; Kristen A. Stout; Amy R. Dunn; Minzheng Wang; Ali Salahpour; Thomas S. Guillot; Gary W. Miller

The psychostimulant methamphetamine (METH) is highly addictive and neurotoxic to dopamine terminals. METH toxicity has been suggested to be due to the release and accumulation of dopamine in the cytosol of these terminals. The vesicular monoamine transporter 2 (VMAT2; SLC18A2) is a critical mediator of dopamine handling. Mice overexpressing VMAT2 (VMAT2-HI) have an increased vesicular capacity to store dopamine, thus augmenting striatal dopamine levels and dopamine release in the striatum. Based on the altered compartmentalization of intracellular dopamine in the VMAT2-HI mice, we assessed whether enhanced vesicular function was capable of reducing METH-induced damage to the striatal dopamine system. While wildtype mice show significant losses in striatal levels of the dopamine transporter (65% loss) and tyrosine hydroxylase (46% loss) following a 4 × 10 mg/kg METH dosing regimen, VMAT2-HI mice were protected from this damage. VMAT2-HI mice were also spared from the inflammatory response that follows METH treatment, showing an increase in astroglial markers that was approximately one-third of that of wildtype animals (117% vs 36% increase in GFAP, wildtype vs VMAT2-HI). Further analysis also showed that elevated VMAT2 level does not alter the ability of METH to increase core body temperature, a mechanism integral to the toxicity of the drug. Finally, the VMAT2-HI mice showed no difference from wildtype littermates on both METH-induced conditioned place preference and in METH-induced locomotor activity (1 mg/kg METH). These results demonstrate that elevated VMAT2 protects against METH toxicity without enhancing the rewarding effects of the drug. Since the VMAT2-HI mice are protected from METH despite higher basal dopamine levels, this study suggests that METH toxicity depends more on the proper compartmentalization of synaptic dopamine than on the absolute amount of dopamine in the brain.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease

Amy R. Dunn; Kristen A. Stout; Minagi Ozawa; Kelly M. Lohr; Carlie A. Hoffman; Alison I. Bernstein; Yingjie Li; Minzheng Wang; Carmelo Sgobio; Namratha Sastry; Huaibin Cai; W. Michael Caudle; Gary W. Miller

Significance Here we describe a role for the synaptic vesicle glycoprotein 2C (SV2C) in dopamine neurotransmission and Parkinson disease (PD). SV2C is expressed on the vesicles of dopamine-producing neurons, and genetic deletion of SV2C causes a reduction in synaptic release of dopamine. The reduced dopamine release is associated with a decrease in motor activity. SV2C is suspected of mediating the neuroprotective effects of nicotine, and we show an ablated neurochemical response to nicotine in SV2C-knockout mice. Last, we demonstrate that SV2C expression is specifically disrupted in mice that express mutated α-synuclein and in humans with PD. Together, these data establish SV2C as an important mediator of dopamine homeostasis and a potential contributor to PD pathogenesis. Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.


Toxicological Sciences | 2016

Vesicular Monoamine Transporter 2 (VMAT2) Level Regulates MPTP Vulnerability and Clearance of Excess Dopamine in Mouse Striatal Terminals

Kelly M. Lohr; Merry Chen; Carlie A. Hoffman; Miranda J. McDaniel; Kristen A. Stout; Amy R. Dunn; Minzheng Wang; Alison I. Bernstein; Gary W. Miller

The vesicular monoamine transporter 2 (VMAT2) packages neurotransmitters for release during neurotransmission and sequesters toxicants into vesicles to prevent neuronal damage. In mice, low VMAT2 levels causes catecholaminergic cell loss and behaviors resembling Parkinsons disease, while high levels of VMAT2 increase dopamine release and protect against dopaminergic toxicants. However, comparisons across these VMAT2 mouse genotypes were impossible due to the differing genetic background strains of the animals. Following back-crossing to a C57BL/6 line, we confirmed that mice with approximately 95% lower VMAT2 levels compared with wild-type (VMAT2-LO) display significantly reduced vesicular uptake, progressive dopaminergic terminal loss with aging, and exacerbated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity. Conversely, VMAT2-overexpressing mice (VMAT2-HI) are protected from the loss of striatal terminals following MPTP treatment. We also provide evidence that enhanced vesicular filling in the VMAT2-HI mice modifies the handling of newly synthesized dopamine, indicated by changes in indirect measures of extracellular dopamine clearance. These results confirm the role of VMAT2 in the protection of vulnerable nigrostriatal dopamine neurons and may also provide new insight into the side effects of L-DOPA treatments in Parkinsons disease.


Expert Review of Neurotherapeutics | 2014

VMAT2 and Parkinson’s disease: harnessing the dopamine vesicle

Kelly M. Lohr; Gary W. Miller

Despite a movement away from dopamine-focused Parkinson’s disease (PD) research, a recent surge of evidence now suggests that altered vesicular storage of dopamine may contribute to the demise of the nigral neurons in this disease. Human studies demonstrate that the vesicular monoamine transporter 2 (VMAT2; SLC18A2) is dysfunctional in PD brain. Moreover, studies with transgenic mice suggest that there is an untapped reserve capacity of the dopamine vesicle that could be unbridled by increasing VMAT2 function. Therapeutic manipulation of VMAT2 level or function has the potential to improve efficacy of dopamine derived from administered levodopa, increase dopamine neurotransmission from remaining midbrain dopamine neurons and protect against neurotoxic insults. Thus, the development of drugs to enhance the storage of release of dopamine may be a fruitful avenue of research for PD.


Brain Research | 2012

Cells in the female retrotrapezoid region upregulate c-fos in response to 10%, but not 5%, carbon dioxide

Mary Melissa Niblock; Kelly M. Lohr; Melissa Nixon; Caitlin Barnes; Meredith Schaudies; Mark Murphy

The retrotrapezoid nucleus (RTN) is thought to regulate breathing in response to changes in blood carbon dioxide (CO(2)), and to make a vital contribution to respiratory drive, especially during sleep. However, cells in the female RTN fail to upregulate c-fos in response to low level CO(2) exposure, while cells in the male RTN have a robust upregulation of c-fos in response to low level CO(2) exposure. In this study, we examined the possibility that the female RTN has a higher threshold for c-fos upregulation in response to CO(2). Following exposure of Fos-Tau-LacZ (FTL) transgenic mice to 10% CO(2), c-fos was upregulated in just as many cells in the female as in the male RTN. In addition, the male RTN responded equivalently to 5% and 10% CO(2), consistent with a lack of a dose response to CO(2) in the male RTN. Cells in the nearby facial nucleus upregulated c-fos in the same number of cells regardless of sex or gas exposure, confirming that the sex difference in the RTN is unique to that nucleus. We propose that the male and female RTN upregulate c-fos differently in response to CO(2) due to differences in the transcriptional regulation by estrogens of genes that encode proteins related to neuronal excitability or specifically related to central chemoreception, such as potassium channels. These findings could have clinical relevance to sleep related breathing disorders that disproportionately affect males, including the sudden infant death syndrome and sleep apnea.


Journal of Chemical Neuroanatomy | 2017

Immunochemical localization of vesicular monoamine transporter 2 (VMAT2) in mouse brain

Rachel A. Cliburn; Amy R. Dunn; Kristen A. Stout; Carlie A. Hoffman; Kelly M. Lohr; Alison I. Bernstein; Emily J. Winokur; James P. Burkett; Yvonne Schmitz; William Michael Caudle; Gary W. Miller

Vesicular monoamine transporter 2 (VMAT2, SLC18A2) is a transmembrane transporter protein that packages dopamine, serotonin, norepinephrine, and histamine into vesicles in preparation for neurotransmitter release from the presynaptic neuron. VMAT2 function and related vesicle dynamics have been linked to susceptibility to oxidative stress, exogenous toxicants, and Parkinsons disease. To address a recent depletion of commonly used antibodies to VMAT2, we generated and characterized a novel rabbit polyclonal antibody generated against a 19 amino acid epitope corresponding to an antigenic sequence within the C-terminal tail of mouse VMAT2. We used genetic models of altered VMAT2 expression to demonstrate that the antibody specifically recognizes VMAT2 and localizes to synaptic vesicles. Furthermore, immunohistochemical labeling using this VMAT2 antibody produces immunoreactivity that is consistent with expected VMAT2 regional distribution. We show the distribution of VMAT2 in monoaminergic brain regions of mouse brain, notably the midbrain, striatum, olfactory tubercle, dopaminergic paraventricular nuclei, tuberomammillary nucleus, raphe nucleus, and locus coeruleus. Normal neurotransmitter vesicle dynamics are critical for proper health and functioning of the nervous system, and this well-characterized VMAT2 antibody will be a useful tool in studying neurodegenerative and neuropsychiatric conditions characterized by vesicular dysfunction.


Parkinson's Disease | 2015

Comparative Proteomic Analysis of Carbonylated Proteins from the Striatum and Cortex of Pesticide-Treated Mice

Christina M. Coughlan; Douglas I. Walker; Kelly M. Lohr; Jason R. Richardson; Laura Saba; W. Michael Caudle; Kristofer S. Fritz; James R. Roede

Epidemiological studies indicate exposures to the herbicide paraquat (PQ) and fungicide maneb (MB) are associated with increased risk of Parkinsons disease (PD). Oxidative stress appears to be a premier mechanism that underlies damage to the nigrostriatal dopamine system in PD and pesticide exposure. Enhanced oxidative stress leads to lipid peroxidation and production of reactive aldehydes; therefore, we conducted proteomic analyses to identify carbonylated proteins in the striatum and cortex of pesticide-treated mice in order to elucidate possible mechanisms of toxicity. Male C57BL/6J mice were treated biweekly for 6 weeks with saline, PQ (10 mg/kg), MB (30 mg/kg), or the combination of PQ and MB (PQMB). Treatments resulted in significant behavioral alterations in all treated mice and depleted striatal dopamine in PQMB mice. Distinct differences in 4-hydroxynonenal-modified proteins were observed in the striatum and cortex. Proteomic analyses identified carbonylated proteins and peptides from the cortex and striatum, and pathway analyses revealed significant enrichment in a variety of KEGG pathways. Further analysis showed enrichment in proteins of the actin cytoskeleton in treated samples, but not in saline controls. These data indicate that treatment-related effects on cytoskeletal proteins could alter proper synaptic function, thereby resulting in impaired neuronal function and even neurodegeneration.

Collaboration


Dive into the Kelly M. Lohr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmelo Sgobio

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Huaibin Cai

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge