Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristen A. Stout is active.

Publication


Featured researches published by Kristen A. Stout.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo

Kelly M. Lohr; Alison I. Bernstein; Kristen A. Stout; Amy R. Dunn; Carlos R. Lazo; Shawn P. Alter; Minzheng Wang; Yingjie Li; Xueliang Fan; Ellen J. Hess; Hong Yi; Laura M. Vecchio; David S. Goldstein; Thomas S. Guillot; Ali Salahpour; Gary W. Miller

Significance Several therapeutic strategies have been used to enhance monoamine neurotransmitter signaling. However, many of these interventions have deleterious side effects or lose effectiveness due to off-target actions and system feedback. These undesirable consequences likely occur because of temporal dysregulation of neurotransmitter release and uptake. We demonstrate that increasing vesicular packaging enhances dopamine neurotransmission without this signaling disruption. Mice with elevated vesicular monoamine transporter display increased dopamine release, improved outcomes on anxiety and depressive behaviors, enhanced locomotion, and protection from a Parkinson disease-related neurotoxic insult. The malleable nature of the dopamine vesicle suggests that interventions aimed at enhancing vesicle filling may be of therapeutic benefit. Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease.


Experimental Neurology | 2013

Exposure to the polybrominated diphenyl ether mixture DE-71 damages the nigrostriatal dopamine system: Role of dopamine handling in neurotoxicity

Joshua M. Bradner; Tiffany A. Suragh; W. Wyatt Wilson; Carlos R. Lazo; Kristen A. Stout; Hye Mi Kim; Min Z. Wang; Douglas I. Walker; Kurt D. Pennell; Jason R. Richardson; Gary W. Miller; W. Michael Caudle

In the last several decades polybrominated diphenyl ethers (PBDEs) have replaced the previously banned polychlorinated biphenyls (PCBs) in multiple flame retardant utilities. As epidemiological and laboratory studies have suggested PCBs as a risk factor for Parkinsons disease (PD), the similarities between PBDEs and PCBs suggest that PBDEs have the potential to be neurotoxic to the dopamine system. The purpose of this study was to evaluate the neurotoxic effects of the PBDE mixture, DE-71, on the nigrostriatal dopamine system and address the role of altered dopamine handling in mediating this neurotoxicity. Using an in vitro model system we found DE-71 effectively caused cell death in a dopaminergic cell line as well as reducing the number of TH+ neurons isolated from VMAT2 WT and LO animals. Assessment of DE-71 neurotoxicity in vivo demonstrated significant deposition of PBDE congeners in the brains of mice, leading to reductions in striatal dopamine and dopamine handling, as well as reductions in the striatal dopamine transporter (DAT) and VMAT2. Additionally, DE-71 elicited a significant locomotor deficit in the VMAT2 WT and LO mice. However, no change was seen in TH expression in dopamine terminal or in the number of dopamine neurons in the substantia nigra pars compacta (SNpc). To date, these are the first data to demonstrate that exposure to PBDEs disrupts the nigrostriatal dopamine system. Given their similarities to PCBs, additional laboratory and epidemiological research should be considered to assess PBDEs as a potential risk factor for PD and other neurological disorders.


Neurochemistry International | 2014

The vesicular monoamine transporter 2: an underexplored pharmacological target.

Alison I. Bernstein; Kristen A. Stout; Gary W. Miller

Active transport of neurotransmitters into synaptic vesicles is required for their subsequent exocytotic release. In the monoamine system, this process is carried out by the vesicular monoamine transporters (VMAT1 and VMAT2). These proteins are responsible for vesicular packaging of dopamine, norepinephrine, serotonin, and histamine. These proteins are essential for proper neuronal function; however, compared to their plasma membrane counterparts, there are few drugs available that target these vesicular proteins. This is partly due to the added complexity of crossing the plasma membrane, but also to the technical difficulty of assaying for vesicular uptake in high throughput. Until recently, reagents to enable high throughput screening for function of these vesicular neurotransmitter transporters have not been available. Fortunately, novel compounds and methods are now making such screening possible; thus, a renewed focus on these transporters as potential targets is timely and necessary.


ACS Chemical Neuroscience | 2015

Increased Vesicular Monoamine Transporter 2 (VMAT2; Slc18a2) Protects against Methamphetamine Toxicity

Kelly M. Lohr; Kristen A. Stout; Amy R. Dunn; Minzheng Wang; Ali Salahpour; Thomas S. Guillot; Gary W. Miller

The psychostimulant methamphetamine (METH) is highly addictive and neurotoxic to dopamine terminals. METH toxicity has been suggested to be due to the release and accumulation of dopamine in the cytosol of these terminals. The vesicular monoamine transporter 2 (VMAT2; SLC18A2) is a critical mediator of dopamine handling. Mice overexpressing VMAT2 (VMAT2-HI) have an increased vesicular capacity to store dopamine, thus augmenting striatal dopamine levels and dopamine release in the striatum. Based on the altered compartmentalization of intracellular dopamine in the VMAT2-HI mice, we assessed whether enhanced vesicular function was capable of reducing METH-induced damage to the striatal dopamine system. While wildtype mice show significant losses in striatal levels of the dopamine transporter (65% loss) and tyrosine hydroxylase (46% loss) following a 4 × 10 mg/kg METH dosing regimen, VMAT2-HI mice were protected from this damage. VMAT2-HI mice were also spared from the inflammatory response that follows METH treatment, showing an increase in astroglial markers that was approximately one-third of that of wildtype animals (117% vs 36% increase in GFAP, wildtype vs VMAT2-HI). Further analysis also showed that elevated VMAT2 level does not alter the ability of METH to increase core body temperature, a mechanism integral to the toxicity of the drug. Finally, the VMAT2-HI mice showed no difference from wildtype littermates on both METH-induced conditioned place preference and in METH-induced locomotor activity (1 mg/kg METH). These results demonstrate that elevated VMAT2 protects against METH toxicity without enhancing the rewarding effects of the drug. Since the VMAT2-HI mice are protected from METH despite higher basal dopamine levels, this study suggests that METH toxicity depends more on the proper compartmentalization of synaptic dopamine than on the absolute amount of dopamine in the brain.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease

Amy R. Dunn; Kristen A. Stout; Minagi Ozawa; Kelly M. Lohr; Carlie A. Hoffman; Alison I. Bernstein; Yingjie Li; Minzheng Wang; Carmelo Sgobio; Namratha Sastry; Huaibin Cai; W. Michael Caudle; Gary W. Miller

Significance Here we describe a role for the synaptic vesicle glycoprotein 2C (SV2C) in dopamine neurotransmission and Parkinson disease (PD). SV2C is expressed on the vesicles of dopamine-producing neurons, and genetic deletion of SV2C causes a reduction in synaptic release of dopamine. The reduced dopamine release is associated with a decrease in motor activity. SV2C is suspected of mediating the neuroprotective effects of nicotine, and we show an ablated neurochemical response to nicotine in SV2C-knockout mice. Last, we demonstrate that SV2C expression is specifically disrupted in mice that express mutated α-synuclein and in humans with PD. Together, these data establish SV2C as an important mediator of dopamine homeostasis and a potential contributor to PD pathogenesis. Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.


Journal of Neuroscience Methods | 2012

A fluorescent-based assay for live cell, spatially resolved assessment of vesicular monoamine transporter 2-mediated neurotransmitter transport

Alison I. Bernstein; Kristen A. Stout; Gary W. Miller

The vesicular monoamine transporter 2 (VMAT2; Slc18a2) packages monoamines into synaptic vesicles. Monoamine homeostasis is highly regulated and dysfunction may play a role in Parkinsons disease, Huntingtons disease, drug addiction, and neuropsychiatric disorders. The primary function of VMAT2 is to sequester monoamine neurotransmitters into vesicles for subsequent release; it also sequesters toxicants away from cytosolic sites of action. Identification of compounds that modify the action of VMAT2 may be useful as therapeutic agents for preventing or reversing monoamine-related toxicity. Current methods for measuring VMAT2 function are unable to assess uptake in intact cells. Here, we adapted the Neurotransmitter Uptake Assay (Molecular Devices) to develop a measure of VMAT2 function in live whole cells. This assay contains a fluorescent compound, which is transported into cells by the plasma membrane monoamine transporters and has been marketed as a rapid, high-throughput, plate reader based assay for function of these plasma membrane transporters. We demonstrate a modified version of this assay that can be used to visualize and measure transport into vesicles by VMAT2. HEK293 cell lines stably expressing the dopamine transporter and a mCherry-VMAT2 fusion protein were generated. Confocal microscopy confirmed that the fluorescent compound is transported into mCherry-positive compartments. Furthermore, the VMAT2-specific inhibitor tetrabenazine (TBZ) blocks uptake into the mCherry-positive compartment. Confocal images can be analyzed to generate a measure of VMAT2 activity. In summary, we demonstrate a method for spatially resolved analysis of VMAT2-mediated uptake in live intact cells.


Toxicological Sciences | 2016

Vesicular Monoamine Transporter 2 (VMAT2) Level Regulates MPTP Vulnerability and Clearance of Excess Dopamine in Mouse Striatal Terminals

Kelly M. Lohr; Merry Chen; Carlie A. Hoffman; Miranda J. McDaniel; Kristen A. Stout; Amy R. Dunn; Minzheng Wang; Alison I. Bernstein; Gary W. Miller

The vesicular monoamine transporter 2 (VMAT2) packages neurotransmitters for release during neurotransmission and sequesters toxicants into vesicles to prevent neuronal damage. In mice, low VMAT2 levels causes catecholaminergic cell loss and behaviors resembling Parkinsons disease, while high levels of VMAT2 increase dopamine release and protect against dopaminergic toxicants. However, comparisons across these VMAT2 mouse genotypes were impossible due to the differing genetic background strains of the animals. Following back-crossing to a C57BL/6 line, we confirmed that mice with approximately 95% lower VMAT2 levels compared with wild-type (VMAT2-LO) display significantly reduced vesicular uptake, progressive dopaminergic terminal loss with aging, and exacerbated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity. Conversely, VMAT2-overexpressing mice (VMAT2-HI) are protected from the loss of striatal terminals following MPTP treatment. We also provide evidence that enhanced vesicular filling in the VMAT2-HI mice modifies the handling of newly synthesized dopamine, indicated by changes in indirect measures of extracellular dopamine clearance. These results confirm the role of VMAT2 in the protection of vulnerable nigrostriatal dopamine neurons and may also provide new insight into the side effects of L-DOPA treatments in Parkinsons disease.


PLOS ONE | 2016

In Vitro and In Vivo Characterization of the Alkaloid Nuciferine.

Martilias S. Farrell; John D. McCorvy; Xi Ping Huang; Daniel J. Urban; Kate L. White; Patrick M. Giguère; Allison K. Doak; Alison I. Bernstein; Kristen A. Stout; Su Mi Park; Ramona M. Rodriguiz; Bradley W. Gray; William S. Hyatt; Andrew P. Norwood; Kevin A. Webster; Brenda M. Gannon; Gary W. Miller; Joseph H. Porter; Brian K. Shoichet; William E. Fantegrossi; William C. Wetsel; Bryan L. Roth

Rationale The sacred lotus (Nelumbo nucifera) contains many phytochemicals and has a history of human use. To determine which compounds may be responsible for reported psychotropic effects, we used in silico predictions of the identified phytochemicals. Nuciferine, an alkaloid component of Nelumbo nucifera and Nymphaea caerulea, had a predicted molecular profile similar to antipsychotic compounds. Our study characterizes nuciferine using in vitro and in vivo pharmacological assays. Methods Nuciferine was first characterized in silico using the similarity ensemble approach, and was followed by further characterization and validation using the Psychoactive Drug Screening Program of the National Institute of Mental Health. Nuciferine was then tested in vivo in the head-twitch response, pre-pulse inhibition, hyperlocomotor activity, and drug discrimination paradigms. Results Nuciferine shares a receptor profile similar to aripiprazole-like antipsychotic drugs. Nuciferine was an antagonist at 5-HT2A, 5-HT2C, and 5-HT2B, an inverse agonist at 5-HT7, a partial agonist at D2, D5 and 5-HT6, an agonist at 5-HT1A and D4 receptors, and inhibited the dopamine transporter. In rodent models relevant to antipsychotic drug action, nuciferine blocked head-twitch responses and discriminative stimulus effects of a 5-HT2A agonist, substituted for clozapine discriminative stimulus, enhanced amphetamine induced locomotor activity, inhibited phencyclidine (PCP)-induced locomotor activity, and rescued PCP-induced disruption of prepulse inhibition without induction of catalepsy. Conclusions The molecular profile of nuciferine was similar but not identical to that shared with several approved antipsychotic drugs suggesting that nuciferine has atypical antipsychotic-like actions.


Journal of Chemical Neuroanatomy | 2017

Immunochemical localization of vesicular monoamine transporter 2 (VMAT2) in mouse brain

Rachel A. Cliburn; Amy R. Dunn; Kristen A. Stout; Carlie A. Hoffman; Kelly M. Lohr; Alison I. Bernstein; Emily J. Winokur; James P. Burkett; Yvonne Schmitz; William Michael Caudle; Gary W. Miller

Vesicular monoamine transporter 2 (VMAT2, SLC18A2) is a transmembrane transporter protein that packages dopamine, serotonin, norepinephrine, and histamine into vesicles in preparation for neurotransmitter release from the presynaptic neuron. VMAT2 function and related vesicle dynamics have been linked to susceptibility to oxidative stress, exogenous toxicants, and Parkinsons disease. To address a recent depletion of commonly used antibodies to VMAT2, we generated and characterized a novel rabbit polyclonal antibody generated against a 19 amino acid epitope corresponding to an antigenic sequence within the C-terminal tail of mouse VMAT2. We used genetic models of altered VMAT2 expression to demonstrate that the antibody specifically recognizes VMAT2 and localizes to synaptic vesicles. Furthermore, immunohistochemical labeling using this VMAT2 antibody produces immunoreactivity that is consistent with expected VMAT2 regional distribution. We show the distribution of VMAT2 in monoaminergic brain regions of mouse brain, notably the midbrain, striatum, olfactory tubercle, dopaminergic paraventricular nuclei, tuberomammillary nucleus, raphe nucleus, and locus coeruleus. Normal neurotransmitter vesicle dynamics are critical for proper health and functioning of the nervous system, and this well-characterized VMAT2 antibody will be a useful tool in studying neurodegenerative and neuropsychiatric conditions characterized by vesicular dysfunction.


Brain Research | 2017

Immunochemical analysis of the expression of SV2C in mouse, macaque and human brain

Amy R. Dunn; Carlie A. Hoffman; Kristen A. Stout; Minagi Ozawa; Rohan K. Dhamsania; Gary W. Miller

The synaptic vesicle glycoprotein 2C (SV2C) is an undercharacterized protein with enriched expression in phylogenetically old brain regions. Its precise role within the brain is unclear, though various lines of evidence suggest that SV2C is involved in the function of synaptic vesicles through the regulation of vesicular trafficking, calcium-induced exocytosis, or synaptotagmin function. SV2C has been linked to multiple neurological disorders, including Parkinsons disease and psychiatric conditions. SV2C is expressed in various cell types-primarily dopaminergic, GABAergic, and cholinergic cells. In mice, it is most highly expressed in nuclei within the basal ganglia, though it is unknown if this pattern of expression is consistent across species. Here, we use a custom SV2C-specific antiserum to describe localization within the brain of mouse, nonhuman primate, and human, including cell-type localization. We found that the immunoreactivity with this antiserum is consistent with previously-published antibodies, and confirmed localization of SV2C in the basal ganglia of rodent, rhesus macaque, and human. We observed strongest expression of SV2C in the substantia nigra, ventral tegmental area, dorsal striatum, pallidum, and nucleus accumbens of each species. Further, we demonstrate colocalization between SV2C and markers of dopaminergic, GABAergic, and cholinergic neurons within these brain regions. SV2C has been increasingly linked to dopamine and basal ganglia function. These antisera will be an important resource moving forward in our understanding of the role of SV2C in vesicle dynamics and neurological disease.

Collaboration


Dive into the Kristen A. Stout's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge