Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keming Luo is active.

Publication


Featured researches published by Keming Luo.


Scientific Reports | 2015

Efficient CRISPR/Cas9-mediated Targeted Mutagenesis in Populus in the First Generation

Di Fan; Tingting Liu; Chaofeng Li; Bo Jiao; Shuang Li; Yishu Hou; Keming Luo

Recently, RNA-guided genome editing using the type II clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system has been applied to edit the plant genome in several herbaceous plant species. However, it remains unknown whether this system can be used for genome editing in woody plants. In this study, we describe the genome editing and targeted gene mutation in a woody species, Populus tomentosa Carr. via the CRISPR/Cas9 system. Four guide RNAs (gRNAs) were designed to target with distinct poplar genomic sites of the phytoene desaturase gene 8 (PtoPDS) which are followed by the protospacer-adjacent motif (PAM). After Agrobacterium-mediated transformation, obvious albino phenotype was observed in transgenic poplar plants. By analyzing the RNA-guided genome-editing events, 30 out of 59 PCR clones were homozygous mutants, 2 out of 59 were heterozygous mutants and the mutation efficiency at these target sites was estimated to be 51.7%. Our data demonstrate that the Cas9/sgRNA system can be exploited to precisely edit genomic sequence and effectively create knockout mutations in woody plants.


Plant Cell Reports | 2007

The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters

Xuelian Zheng; Wei Deng; Keming Luo; Hui Duan; Yongqin Chen; Richard J. McAvoy; Shuiqing Song; Yan Pei; Yi Li

Here we report the effect of the 35S promoter sequence on activities of the tissue- and organ-specific gene promoters in tobacco plants. In the absence of the 35S promoter sequence the AAP2 promoter is active only in vascular tissues as indicated by expression of the AAP2:GUS gene. With the 35S promoter sequence in the same T-plasmid, transgenic plants exhibit twofold to fivefold increase in AAP2 promoter activity and the promoter becomes active in all tissue types. Transgenic plants hosting the ovary-specific AGL5:iaaM gene (iaaM coding an auxin biosynthetic gene) showed a wild-type phenotype except production of seedless fruits, whereas plants hosting the AGL5:iaaM gene along with the 35S promoter sequence showed drastic morphological alterations. RT-PCR analysis confirms that the phenotype was caused by activation of the AGL5:iaaM gene in non-ovary organs including roots, stems and flowers. When the pollen-, ovule- and early embryo-specific PAB5:barnase gene (barnase coding a RNase gene) was transformed, the presence of 35S promoter sequence drastically reduced transformation efficiencies. However, the transformation efficiencies were restored in the absence of 35S promoter, indicating that the 35S promoter might activate the expression of PAB5:barnase in non-reproductive organs such as calli and shoot primordia. Furthermore, if the 35S promoter sequence was replaced with the NOS promoter sequence, no alteration in AAP2, AGL5 or PAB5 promoter activities was observed. Our results demonstrate that the 35S promoter sequence can convert an adjacent tissue- and organ-specific gene promoter into a globally active promoter.


Journal of Experimental Botany | 2014

Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses

Yuanzhong Jiang; Yanjiao Duan; Jia Yin; Shenglong Ye; Jingru Zhu; Faqi Zhang; Wanxiang Lu; Di Fan; Keming Luo

Highlight text This study presents the genome-wide characterization of the Populus WRKY family under biotic and abiotic stresses. Overexpression of an SA-inducible gene, PtrWRKY89, enhanced resistance to pathogens in transgenic poplar.


Biotechnology Letters | 2010

The chitinase gene (Bbchit1) from Beauveria bassiana enhances resistance to Cytospora chrysosperma in Populus tomentosa Carr.

Zhichun Jia; Yimin Sun; Li Yuan; Qiaoyan Tian; Keming Luo

The Chinese white poplar (Populus tomentosa Carr.) is susceptible to infection by plant diseases which severely affect its growth and substantially decrease its economic value. A chitinase gene (Bbchit1) from Beauveria bassiana was introduced into Chinese white poplar (Populus tomentosa Carr.) by Agrobacterium-mediated transformation. The T-DNA of plant transformation vector contained the β-glucuronidase reporter gene (GUS) under the control of CaMV 35S promoter and the neomycin phosphotransferase selection marker gene (NPTII) driven by the nos promoter. GUS activity was detected in most of the kanamycin-resistant plants tested. Stable integration of transgenes in the plant genome was confirmed using PCR. RT-PCR analysis showed that the Bbchit1 gene was transcribed in the transformed plants. When evaluated for resistance to poplar fungal pathogens with an in vitro assay, crude extracts from leaves and shoots of transgenic lines were inhibitory against the pathogenic fungus Cytospora chrysosperma (Pers.) Fr. Similarly, Bbchit1 overexpression enhanced disease resistance to C. chrysosperma in the transformed poplar plants, indicating that is gene is potentially useful to protect the trees against fungal diseases.


Planta | 2009

Overexpression of Citrus junos mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance.

Wei Deng; Keming Luo; Zhengguo Li; Yingwu Yang; Nan Hu; Yu Wu

Aluminum (Al) toxicity is one of the major factors that limit plant growth in acid soils. Al-induced release of organic acids into rhizosphere from the root apex has been identified as a major Al-tolerance mechanism in many plant species. In this study, Al tolerance of Yuzu (Citrus Junos Sieb. ex Tanaka) was tested on the basis of root elongation and the results demonstrated that Yuzu was Al tolerant compared with other plant species. Exposure to Al triggered the exudation of citrate from the Yuzu root. Thus, the mechanism of Al tolerance in Yuzu involved an Al-inducible increase in citrate release. Aluminum also elicited an increase of citrate content and increased the expression level of mitochondrial citrate synthase (CjCS) gene and enzyme activity in Yuzu. The CjCS gene was cloned from Yuzu and overexpressed in Nicotiana benthamiana using Agrobacterium tumefaciens-mediated methods. Increased expression level of the CjCS gene and enhanced enzyme activity were observed in transgenic plants compared with the wild-type plants. Root growth experiments showed that transgenic plants have enhanced levels of Al tolerance. The transgenic Nicotiana plants showed increased levels of citrate in roots compared to wild-type plants. The exudation of citrate from roots of the transgenic plants significantly increased when exposed to Al. The results with transgenic plants suggest that overexpression of mitochondrial CS can be a useful tool to achieve Al tolerance.


PLOS ONE | 2013

Functional characterization of the poplar R2R3-MYB transcription factor PtoMYB216 involved in the regulation of lignin biosynthesis during wood formation.

Qiaoyan Tian; Xianqiang Wang; Chaofeng Li; Wanxiang Lu; Li Yang; Yuanzhong Jiang; Keming Luo

Because of the importance of wood in many industrial applications, tremendous studies have been performed on wood formation, especially in lignin biosynthesis. MYB transcription factors (TFs), which consist of a large family of plant TFs, have been reported to directly regulate lignin biosynthetic genes in a number of plants. In this study, we describe the cloning and functional characterization of PtoMYB216, a cDNA isolated from Chinese white poplar (Populus tomentosa Carr.). PtoMYB216 encodes a protein belonging to the R2R3-MYB family and displays significant similarity with other MYB factors shown to regulate lignin synthesis in Arabidopsis. Gene expression profiling studies showed that PtoMYB216 mRNA is specifically expressed during secondary wall formation in wood. The 1.8-kb promoter sequence of PtoMYB216 was fused to the GUS coding sequence and introduced into wild-type A. thaliana. GUS expression was shown to be restricted to tissues undergoing secondary cell wall formation. Overexpression of PtoMYB216 specifically activated the expression of the upstream genes in the lignin biosynthetic pathway and resulted in ectopic deposition of lignin in cells that are normally unligninified. These results suggest that PtoMYB216 is specific transcriptional activators of lignin biosynthesis and involved in the regulation of wood formation in poplar.


Journal of Experimental Botany | 2012

Molecular cloning and characterization of PtrLAR3, a gene encoding leucoanthocyanidin reductase from Populus trichocarpa, and its constitutive expression enhances fungal resistance in transgenic plants

Li Yuan; Lijun Wang; Zujing Han; Yuanzhong Jiang; Lili Zhao; Hong Liu; Li Yang; Keming Luo

The flavonoid-derived proanthocyanidins (PAs) are one class of the major defence phenolics in poplar leaves. Transcriptional activation of PA biosynthetic genes, resulting in PA accumulation in leaves, was detected following infection by the fungal Marssonina brunnea f.sp. multigermtubi using digital gene expression analysis. In order to study PA biosynthesis and its induction by fungi, a putative leucoanthocyanidin reductase gene, PtrLAR3, was isolated from Populus trichocarpa. Sequence comparison of PtrLAR3 with other known leucoanthocyanidin reductase proteins revealed high amino acid sequence similarity. Semi-quantitative reverse-transcription (RT) PCR and quantitative real-time PCR analysis demonstrated that PtrLAR3 was expressed in various tissues and the highest level of expression was observed in roots. Overexpression of PtrLAR3 in Chinese white poplar (Populus tomentosa Carr.) led to a significant plant-wide increase in PA levels. In vitro assays showed that crude leaf extracts from 35S:PtrLAR3 transformants were able to inhibit significantly the hyphal growth of M. brunnea f.sp. multigermtubi compared to the extracts from control plants. The transgenic 35S:PtrLAR3 poplar plants displayed a significant (P < 0.05) reduction in their disease symptoms compared with the control. RT-PCR analysis showed that PtrLAR3 expression was up-regulated in all transformants. These results suggested that constitutive expression of endogenous PtrLAR3 could be exploited to improve resistance to fungal pathogens in poplar.


PLOS ONE | 2012

Molecular Cloning and Characterization of Two Genes Encoding Dihydroflavonol-4-Reductase from Populus trichocarpa

Yan Huang; Jiqing Gou; Zhichun Jia; Li Yang; Yimin Sun; Xunyan Xiao; Feng Song; Keming Luo

Dihydroflavonol 4-reductase (DFR, EC 1.1.1.219) is a rate-limited enzyme in the biosynthesis of anthocyanins and condensed tannins (proanthocyanidins) that catalyzes the reduction of dihydroflavonols to leucoanthocyanins. In this study, two full-length transcripts encoding for PtrDFR1 and PtrDFR2 were isolated from Populus trichocarpa. Sequence alignment of the two PtrDFRs with other known DFRs reveals the homology of these genes. The expression profile of PtrDFRs was investigated in various tissues of P. trichocarpa. To determine their functions, two PtrDFRs were overexpressed in tobacco (Nicotiana tabacum) via Agrobacterium-mediated transformation. The associated color change in the flowers was observed in all 35S:PtrDFR1 lines, but not in 35S:PtrDFR2 lines. Compared to the wild-type control, a significantly higher accumulation of anthocyanins was detected in transgenic plants harboring the PtrDFR1. Furthermore, overexpressing PtrDFR1 in Chinese white poplar (P. tomentosa Carr.) resulted in a higher accumulation of both anthocyanins and condensed tannins, whereas constitutively expressing PtrDFR2 only improved condensed tannin accumulation, indicating the potential regulation of condensed tannins by PtrDFR2 in the biosynthetic pathway in poplars.


Tree Physiology | 2010

Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus)

Zhichun Jia; Jiqing Gou; Yimin Sun; Li Yuan; Qiao Tang; Xingyong Yang; Yan Pei; Keming Luo

The antimicrobial protein gene LJAMP2 is a plant non-specific lipid transfer protein from motherwort (Leonurus japonicus). In this study, it was introduced into Chinese white poplar (Populus tomentosa Carr.) via Agrobacterium-mediated transformation with neomycin phosphotransferase II gene conferring kanamycin resistance as selectable marker. A total of 16 poplar lines were obtained, and polymerase chain reaction (PCR) analysis established the stable integration of transgenes in the plant genome. Reverse transcription-PCR detected LJAMP2 expression in transgenic plants. Resistance to fungal pathogens Alternaria alternata (Fr.) Keissler and Colletotrichum gloeosporioides (Penz.) of transgenic poplar lines was tested. In vitro inhibitory activity against the fungal pathogens was evident from the crude leaf extracts from the transformants. In vivo assays showed that, after infection with both A. alternata (Fr.) Keissler and C. gloeosporioides (Penz.), there was a significant reduction in disease symptoms in transgenic poplar plants compared with the control. These results suggest that constitutive expression of the LJAMP2 gene from motherwort can be exploited to improve resistance to fungal pathogens in poplar.


Biotechnology Letters | 2008

Excision of selectable marker gene from transgenic tobacco using the GM-gene-deletor system regulated by a heat-inducible promoter

Keming Luo; Min Sun; Wei Deng; Shan Xu

To excise a selectable marker gene from transgenic plants, a new binary expression vector based on the ‘genetically modified (GM)-gene-deletor’ system was constructed. In this vector, the gene coding for FLP site-specific recombinase under the control of a heat shock-inducible promoter HSP18.2 from Arabidopsis thaliana and isopentenyltransferase gene (ipt), as a selectable marker gene under the control of the cauliflower mosaic virus 35S (CaMV 35S) promoter, were flanked by two loxP/FRT fusion sequences as recombination sites in direct orientation. Histochemical staining for GUS activity showed that, upon induction by heat shock, all exogenous DNA, including the selectable marker gene ipt, β-glucuronidase (gusA) gene and the FLP recombinase gene, between two loxP/FRT sites was eliminated efficiently from primary transgenic tobacco plants. Molecular analysis further confirmed that excision of the marker gene (ipt) was heritable and stable. Our approach provides a reliable strategy for auto-excising a selectable marker gene from calli, shoots or other tissues of transgenic plants after transformation and producing marker-free transgenic plants.

Collaboration


Dive into the Keming Luo's collaboration.

Top Co-Authors

Avatar

Chaofeng Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Deng

Chongqing University

View shared research outputs
Top Co-Authors

Avatar

Li Yang

Southwest University

View shared research outputs
Top Co-Authors

Avatar

Yan Pei

Southwest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Di Fan

Southwest University

View shared research outputs
Top Co-Authors

Avatar

Xin Zhao

Southwest University

View shared research outputs
Top Co-Authors

Avatar

Li Guo

Southwest University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge