Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken S. Heyndrickx is active.

Publication


Featured researches published by Ken S. Heyndrickx.


Plant Physiology | 2012

Systematic Identification of Functional Plant Modules through the Integration of Complementary Data Sources

Ken S. Heyndrickx; Klaas Vandepoele

A major challenge is to unravel how genes interact and are regulated to exert specific biological functions. The integration of genome-wide functional genomics data, followed by the construction of gene networks, provides a powerful approach to identify functional gene modules. Large-scale expression data, functional gene annotations, experimental protein-protein interactions, and transcription factor-target interactions were integrated to delineate modules in Arabidopsis (Arabidopsis thaliana). The different experimental input data sets showed little overlap, demonstrating the advantage of combining multiple data types to study gene function and regulation. In the set of 1,563 modules covering 13,142 genes, most modules displayed strong coexpression, but functional and cis-regulatory coherence was less prevalent. Highly connected hub genes showed a significant enrichment toward embryo lethality and evidence for cross talk between different biological processes. Comparative analysis revealed that 58% of the modules showed conserved coexpression across multiple plants. Using module-based functional predictions, 5,562 genes were annotated, and an evaluation experiment disclosed that, based on 197 recently experimentally characterized genes, 38.1% of these functions could be inferred through the module context. Examples of confirmed genes of unknown function related to cell wall biogenesis, xylem and phloem pattern formation, cell cycle, hormone stimulus, and circadian rhythm highlight the potential to identify new gene functions. The module-based predictions offer new biological hypotheses for functionally unknown genes in Arabidopsis (1,701 genes) and six other plant species (43,621 genes). Furthermore, the inferred modules provide new insights into the conservation of coexpression and coregulation as well as a starting point for comparative functional annotation.


Science | 2013

ERF115 controls root quiescent center cell division and stem cell replenishment.

Jefri Heyman; Toon Cools; Filip Vandenbussche; Ken S. Heyndrickx; Jelle Van Leene; Ilse Vercauteren; Sandy Vanderauwera; Klaas Vandepoele; Geert De Jaeger; Dominique Van Der Straeten; Lieven De Veylder

The Root of the Problem The quiescent center (QC) within the root meristem plays a key role as a stem cell organizer to sustain the root stem cell niche. The QC cells execute a dual role: prevention of the differentiation of neighboring stem cells, and maintenance of the root structure by undergoing only occasional cell division. The mechanisms that account for the low QC proliferation are unclear, although the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase is known to suppress QC cell division. Through a systematic functional analysis of APC/C-copurifying proteins, Heyman et al. (p. 860) characterized a transcription factor ERF115 as a rate-limiting factor for QC cell division. ERF115 needs to be destroyed to retain QC cells in a resting state. ERF115 operates in a brassinosteroid-dependent manner and controls QC cell division through transcriptional activation of phytosulfokine signaling. Restrained growth of a key root tip region involves an interplay between hormonal activation and transcription factor levels. The quiescent center (QC) plays an essential role during root development by creating a microenvironment that preserves the stem cell fate of its surrounding cells. Despite being surrounded by highly mitotic active cells, QC cells self-renew at a low proliferation rate. Here, we identified the ERF115 transcription factor as a rate-limiting factor of QC cell division, acting as a transcriptional activator of the phytosulfokine PSK5 peptide hormone. ERF115 marks QC cell division but is restrained through proteolysis by the APC/CCCS52A2 ubiquitin ligase, whereas QC proliferation is driven by brassinosteroid-dependent ERF115 expression. Together, these two antagonistic mechanisms delimit ERF115 activity, which is called upon when surrounding stem cells are damaged, revealing a cell cycle regulatory mechanism accounting for stem cell niche longevity.


The Plant Cell | 2014

ANGUSTIFOLIA3 Binds to SWI/SNF Chromatin Remodeling Complexes to Regulate Transcription during Arabidopsis Leaf Development

Liesbeth Vercruyssen; Aurine Verkest; Nathalie Gonzalez; Ken S. Heyndrickx; Dominique Eeckhout; Soon-Ki Han; Teddy Jégu; Rafal Archacki; Jelle Van Leene; Megan Andriankaja; Stefanie De Bodt; Thomas Abeel; Frederik Coppens; Stijn Dhondt; Liesbeth De Milde; Mattias Vermeersch; Katrien Maleux; Kris Gevaert; Andrzej Jerzmanowski; Moussa Benhamed; Doris Wagner; Klaas Vandepoele; Geert De Jaeger; Dirk Inzé

The transcriptional coactivator ANGUSTIFOLIA3 (AN3) stimulates cell division during Arabidopsis leaf development. It is shown that AN3 associates with SWI/SNF chromatin remodeling complexes to regulate the expression of important downstream transcription factors and that the module SWI/SNF-AN3 is a major player in the transition from cell division to cell expansion in developing leaves. The transcriptional coactivator ANGUSTIFOLIA3 (AN3) stimulates cell proliferation during Arabidopsis thaliana leaf development, but the molecular mechanism is largely unknown. Here, we show that inducible nuclear localization of AN3 during initial leaf growth results in differential expression of important transcriptional regulators, including GROWTH REGULATING FACTORs (GRFs). Chromatin purification further revealed the presence of AN3 at the loci of GRF5, GRF6, CYTOKININ RESPONSE FACTOR2, CONSTANS-LIKE5 (COL5), HECATE1 (HEC1), and ARABIDOPSIS RESPONSE REGULATOR4 (ARR4). Tandem affinity purification of protein complexes using AN3 as bait identified plant SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodeling complexes formed around the ATPases BRAHMA (BRM) or SPLAYED. Moreover, SWI/SNF ASSOCIATED PROTEIN 73B (SWP73B) is recruited by AN3 to the promoters of GRF5, GRF3, COL5, and ARR4, and both SWP73B and BRM occupy the HEC1 promoter. Furthermore, we show that AN3 and BRM genetically interact. The data indicate that AN3 associates with chromatin remodelers to regulate transcription. In addition, modification of SWI3C expression levels increases leaf size, underlining the importance of chromatin dynamics for growth regulation. Our results place the SWI/SNF-AN3 module as a major player at the transition from cell proliferation to cell differentiation in a developing leaf.


The Plant Cell | 2014

A Functional and Evolutionary Perspective on Transcription Factor Binding in Arabidopsis thaliana

Ken S. Heyndrickx; Jan Van de Velde; Congmao Wang; Detlef Weigel; Klaas Vandepoele

An integrative meta-analysis of 27 transcription factor profiling experiments containing 15,188 potential target genes in Arabidopsis is used to examine the organization and mechanisms underlying transcription factor regulation on a genome-wide scale. Binding complexity is related to type of the target gene, its function, and expression breadth but does not affect evolvability of the bound regions. Understanding the mechanisms underlying gene regulation is paramount to comprehend the translation from genotype to phenotype. The two are connected by gene expression, and it is generally thought that variation in transcription factor (TF) function is an important determinant of phenotypic evolution. We analyzed publicly available genome-wide chromatin immunoprecipitation experiments for 27 TFs in Arabidopsis thaliana and constructed an experimental network containing 46,619 regulatory interactions and 15,188 target genes. We identified hub targets and highly occupied target (HOT) regions, which are enriched for genes involved in development, stimulus responses, signaling, and gene regulatory processes in the currently profiled network. We provide several lines of evidence that TF binding at plant HOT regions is functional, in contrast to that in animals, and not merely the result of accessible chromatin. HOT regions harbor specific DNA motifs, are enriched for differentially expressed genes, and are often conserved across crucifers and dicots, even though they are not under higher levels of purifying selection than non-HOT regions. Distal bound regions are under purifying selection as well and are enriched for a chromatin state showing regulation by the Polycomb repressive complex. Gene expression complexity is positively correlated with the total number of bound TFs, revealing insights in the regulatory code for genes with different expression breadths. The integration of noncanonical and canonical DNA motif information yields new hypotheses on cobinding and tethering between specific TFs involved in flowering and light regulation.


Plant Cell and Environment | 2012

Comparative co‐expression analysis in plant biology

Sara Movahedi; Michiel Van Bel; Ken S. Heyndrickx; Klaas Vandepoele

The analysis of gene expression data generated by high-throughput microarray transcript profiling experiments has shown that transcriptionally coordinated genes are often functionally related. Based on large-scale expression compendia grouping multiple experiments, this guilt-by-association principle has been applied to study modular gene programmes, identify cis-regulatory elements or predict functions for unknown genes in different model plants. Recently, several studies have demonstrated how, through the integration of gene homology and expression information, correlated gene expression patterns can be compared between species. The incorporation of detailed functional annotations as well as experimental data describing protein-protein interactions, phenotypes or tissue specific expression, provides an invaluable source of information to identify conserved gene modules and translate biological knowledge from model organisms to crops. In this review, we describe the different steps required to systematically compare expression data across species. Apart from the technical challenges to compute and display expression networks from multiple species, some future applications of plant comparative transcriptomics are highlighted.


Nucleic Acids Research | 2014

A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana

Søren Lindemose; Michael Krogh Jensen; Jan Van de Velde; Charlotte O'Shea; Ken S. Heyndrickx; Christopher T. Workman; Klaas Vandepoele; Karen Skriver; Federico De Masi

Target gene identification for transcription factors is a prerequisite for the systems wide understanding of organismal behaviour. NAM-ATAF1/2-CUC2 (NAC) transcription factors are amongst the largest transcription factor families in plants, yet limited data exist from unbiased approaches to resolve the DNA-binding preferences of individual members. Here, we present a TF-target gene identification workflow based on the integration of novel protein binding microarray data with gene expression and multi-species promoter sequence conservation to identify the DNA-binding specificities and the gene regulatory networks of 12 NAC transcription factors. Our data offer specific single-base resolution fingerprints for most TFs studied and indicate that NAC DNA-binding specificities might be predicted from their DNA-binding domains sequence. The developed methodology, including the application of complementary functional genomics filters, makes it possible to translate, for each TF, protein binding microarray data into a set of high-quality target genes. With this approach, we confirm NAC target genes reported from independent in vivo analyses. We emphasize that candidate target gene sets together with the workflow associated with functional modules offer a strong resource to unravel the regulatory potential of NAC genes and that this workflow could be used to study other families of transcription factors.


The Plant Cell | 2015

A Repressor Protein Complex Regulates Leaf Growth in Arabidopsis

Nathalie Gonzalez; Laurens Pauwels; Alexandra Baekelandt; Liesbeth De Milde; Jelle Van Leene; Nienke Besbrugge; Ken S. Heyndrickx; Amparo Cuéllar Pérez; Astrid Nagels Durand; Rebecca De Clercq; Eveline Van De Slijke; Robin Vanden Bossche; Dominique Eeckhout; Kris Gevaert; Klaas Vandepoele; Geert De Jaeger; Alain Goossens; Dirk Inzé

PPD2 interacts with KIX8 and KIX9 proteins to regulate the transcription of its target genes, including the CYCD3s, and helps to control final leaf size in Arabidopsis. Cell number is an important determinant of final organ size. In the leaf, a large proportion of cells are derived from the stomatal lineage. Meristemoids, which are stem cell-like precursor cells, undergo asymmetric divisions, generating several pavement cells adjacent to the two guard cells. However, the mechanism controlling the asymmetric divisions of these stem cells prior to differentiation is not well understood. Here, we characterized PEAPOD (PPD) proteins, the only transcriptional regulators known to negatively regulate meristemoid division. PPD proteins interact with KIX8 and KIX9, which act as adaptor proteins for the corepressor TOPLESS. D3-type cyclin encoding genes were identified among direct targets of PPD2, being negatively regulated by PPDs and KIX8/9. Accordingly, kix8 kix9 mutants phenocopied PPD loss-of-function producing larger leaves resulting from increased meristemoid amplifying divisions. The identified conserved complex might be specific for leaf growth in the second dimension, since it is not present in Poaceae (grasses), which also lack the developmental program it controls.


The Plant Cell | 2014

Inference of Transcriptional Networks in Arabidopsis through Conserved Noncoding Sequence Analysis

Jan Van de Velde; Ken S. Heyndrickx; Klaas Vandepoele

The authors used comparative sequence analysis to delineate, using 12 flowering plants, conserved noncoding sequences in Arabidopsis thaliana and demonstrated a high enrichment for functional cis-regulatory elements in these conserved regions. Based on known binding sites, a gene regulatory network was generated, revealing new and condition-specific functional gene regulatory interactions. Transcriptional regulation plays an important role in establishing gene expression profiles during development or in response to (a)biotic stimuli. Transcription factor binding sites (TFBSs) are the functional elements that determine transcriptional activity, and the identification of individual TFBS in genome sequences is a major goal to inferring regulatory networks. We have developed a phylogenetic footprinting approach for the identification of conserved noncoding sequences (CNSs) across 12 dicot plants. Whereas both alignment and non-alignment-based techniques were applied to identify functional motifs in a multispecies context, our method accounts for incomplete motif conservation as well as high sequence divergence between related species. We identified 69,361 footprints associated with 17,895 genes. Through the integration of known TFBS obtained from the literature and experimental studies, we used the CNSs to compile a gene regulatory network in Arabidopsis thaliana containing 40,758 interactions, of which two-thirds act through binding events located in DNase I hypersensitive sites. This network shows significant enrichment toward in vivo targets of known regulators, and its overall quality was confirmed using five different biological validation metrics. Finally, through the integration of detailed expression and function information, we demonstrate how static CNSs can be converted into condition-dependent regulatory networks, offering opportunities for regulatory gene annotation.


Plant Physiology | 2014

A Generic Tool for Transcription Factor Target Gene Discovery in Arabidopsis Cell Suspension Cultures Based on Tandem Chromatin Affinity Purification

Aurine Verkest; Thomas Abeel; Ken S. Heyndrickx; Jelle Van Leene; Christa Lanz; Eveline Van De Slijke; Nancy De Winne; Dominique Eeckhout; Geert Persiau; Frank Van Breusegem; Dirk Inzé; Klaas Vandepoele; Geert De Jaeger

Tandem chromatin affinity purification in Arabidopsis cell suspension cultures omits the need for specific antibodies and improves DNA enrichment efficiency of transcription factor location experiments. Genome-wide identification of transcription factor (TF) binding sites is pivotal to our understanding of gene expression regulation. Although much progress has been made in the determination of potential binding regions of proteins by chromatin immunoprecipitation, this method has some inherent limitations regarding DNA enrichment efficiency and antibody necessity. Here, we report an alternative strategy for assaying in vivo TF-DNA binding in Arabidopsis (Arabidopsis thaliana) cells by tandem chromatin affinity purification (TChAP). Evaluation of TChAP using the E2Fa TF and comparison with traditional chromatin immunoprecipitation and single chromatin affinity purification illustrates the suitability of TChAP and provides a resource for exploring the E2Fa transcriptional network. Integration with transcriptome, cis-regulatory element, functional enrichment, and coexpression network analyses demonstrates the quality of the E2Fa TChAP sequencing data and validates the identification of new direct E2Fa targets. TChAP enhances both TF target mapping throughput, by circumventing issues related to antibody availability, and output, by improving DNA enrichment efficiency.


Journal of Experimental Botany | 2016

Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development.

Jelle Van Leene; Jonas Blomme; Shubhada Rajabhau Kulkarni; Bernard Cannoot; Nancy De Winne; Dominique Eeckhout; Geert Persiau; Eveline Van De Slijke; Leen Vercruysse; Robin Vanden Bossche; Ken S. Heyndrickx; Steffen Vanneste; Alain Goossens; Kris Gevaert; Klaas Vandepoele; Nathalie Gonzalez; Dirk Inzé; Geert De Jaeger

Highlight bZIP29, an Arabidopsis transcription factor, is expressed in proliferative tissues and involved in the regulation of cell number in the root meristem and leaves.

Collaboration


Dive into the Ken S. Heyndrickx's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jelle Van Leene

Flanders Institute for Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge