Ken S. Lau
Vanderbilt University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ken S. Lau.
Glycobiology | 2008
Ken S. Lau; James W. Dennis
N-Glycan branching in the medial-Golgi generates ligands for lattice-forming lectins (e.g., galectins) that regulate surface levels of glycoproteins including epidermal growth factor (EGF) and transforming growth factor-beta (TGF-beta) receptors. Moreover, functional classes of glycoproteins differ in N-glycan multiplicities (number of N-glycans/peptide), a genetically encoded feature of glycoproteins that interacts with metabolic flux (UDP-GlcNAc) and N-glycan branching to differentially regulate surface levels. Oncogenesis increases beta1,6-N-acetylglucosaminyltransferase V (encoded by Mgat5) expression, and its high-affinity galectin ligands promote surface retention of growth receptors with a reduced dependence on UDP-GlcNAc. Mgat5(-/-) tumor cells are less metastatic in vivo and less responsive to cytokines in vitro, but undergo secondary changes that support tumor cell proliferation. These include loss of Caveolin-1, a negative regulator of EGF signaling, and increased reactive oxygen species, an inhibitor of phosphotyrosine phosphatases. These studies suggest a systems approach to cancer treatment where the surface distribution of receptors is targeted through metabolism and N-glycan branching to induce growth arrest.
Genome Biology | 2003
Joseph Cheung; Xavier Estivill; Razi Khaja; Jeffrey R. MacDonald; Ken S. Lau; Lap-Chee Tsui; Stephen W. Scherer
BackgroundPrevious studies have suggested that recent segmental duplications, which are often involved in chromosome rearrangements underlying genomic disease, account for some 5% of the human genome. We have developed rapid computational heuristics based on BLAST analysis to detect segmental duplications, as well as regions containing potential sequence misassignments in the human genome assemblies.ResultsOur analysis of the June 2002 public human genome assembly revealed that 107.4 of 3,043.1 megabases (Mb) (3.53%) of sequence contained segmental duplications, each with size equal or more than 5 kb and 90% identity. We have also detected that 38.9 Mb (1.28%) of sequence within this assembly is likely to be involved in sequence misassignment errors. Furthermore, we have identified a significant subset (199,965 of 2,327,473 or 8.6%) of single-nucleotide polymorphisms (SNPs) in the public databases that are not true SNPs but are potential paralogous sequence variants.ConclusionUsing two distinct computational approaches, we have identified most of the sequences in the human genome that have undergone recent segmental duplications. Near-identical segmental duplications present a major challenge to the completion of the human genome sequence. Potential sequence misassignments detected in this study would require additional efforts to resolve.
Traffic | 2009
James W. Dennis; Ken S. Lau; Michael Demetriou; Ivan R. Nabi
The association of receptors and solute transporters with components of the endocytic machinery regulates their surface levels, and thereby cellular sensitivity to cytokines, ligands and nutrients in the extracellular environment. Most transmembrane receptors and solute transporters are glycoproteins, and the Asn (N)‐linked oligosaccharides (N‐glycans) can bind animal lectins, forming multivalent lattices or microdomains that regulate glycoprotein mobility in the plane of membrane. The N‐glycan number (sequence‐encoded NXS/T) and context‐dependent Golgi N‐glycan branching cooperate to regulate glycoprotein affinities for the galectin family of lectins. Galectin‐3 binding reduces EGF receptor trafficking into clathrin‐coated pits and caveolae lipid rafts, decreases ligand‐independent receptor activation and promotes α5β1 integrin remodelling in focal adhesions. N‐glycan branching in the medial Golgi increases glycan affinity for galectins, and the Golgi pathway is sensitive to uridine diphosphate‐N‐acetylglucosamine (UDP‐GlcNAc) supply, in turn hexosamine pathway metabolites (fructose‐6‐P, glutamine and acetyl‐CoA). Thus, lattice avidity and cellular responsiveness to extracellular cues are regulated in an adaptive manner by metabolism and Golgi modification to glycoproteins. Computational modelling of the hexosamine/Golgi/lattice has provided new insight on cell surface adaptation in cancer and autoimmune disease.
Nature Communications | 2011
Haik Mkhikian; Ani Grigorian; Carey F. Li; Hung-Lin Chen; Barbara L. Newton; Raymond W. Zhou; Christine Beeton; Sevan Torossian; Gevork Grikor Tatarian; Sung-Uk Lee; Ken S. Lau; Erin Walker; Katherine A. Siminovitch; K. George Chandy; Zhaoxia Yu; James W. Dennis; Michael Demetriou
How environmental factors combine with genetic risk at the molecular level to promote complex trait diseases such as multiple sclerosis (MS) is largely unknown. In mice, N-glycan branching by the Golgi enzymes Mgat1 and/or Mgat5 prevents T cell hyperactivity, cytotoxic T-lymphocyte antigen 4 (CTLA-4) endocytosis, spontaneous inflammatory demyelination and neurodegeneration, the latter pathologies characteristic of MS. Here we show that MS risk modulators converge to alter N-glycosylation and/or CTLA-4 surface retention conditional on metabolism and vitamin D3, including genetic variants in interleukin-7 receptor-α (IL7RA*C), interleukin-2 receptor-α (IL2RA*T), MGAT1 (IVAVT−T) and CTLA-4 (Thr17Ala). Downregulation of Mgat1 by IL7RA*C and IL2RA*T is opposed by MGAT1 (IVAVT−T) and vitamin D3, optimizing branching and mitigating MS risk when combined with enhanced CTLA-4 N-glycosylation by CTLA-4 Thr17. Our data suggest a molecular mechanism in MS whereby multiple environmental and genetic inputs lead to dysregulation of a final common pathway, namely N-glycosylation.
Science Signaling | 2011
Ken S. Lau; Juchheim Am; Cavaliere Kr; Douglas A. Lauffenburger; Kevin M. Haigis
A systems-level analysis of signaling in the mouse intestine identifies critical mediators of inflammation and regionally specific responses. Gut Feelings Chronic gut inflammation can lead to inflammatory bowel disease (IBD), a debilitating condition in which normal intestinal epithelial homeostasis is disrupted. The inflammatory cytokine tumor necrosis factor–α (TNF-α), which is implicated in IBD, triggers both pro-apoptotic and pro-survival responses in cells. Lau et al. performed a systems-based analysis of the effects of systemic TNF-α in the mouse small intestine. Even within this small area, TNF-α–dependent effects varied in their timing and location, with apoptosis triggered in the duodenum and proliferation in the ileum. Analysis of the extent of protein phosphorylation together with modeling predicted that the extracellular signal–regulated kinase (ERK) pathway was critical in mediating responses to TNF-α. Indeed, pharmacological inhibition of ERK signaling in TNF-α–treated mice differentially affected TNF-α–induced responses. This study demonstrates that analysis of signaling at the systems level can be used to depict apoptotic and proliferative responses in vivo and to generate testable hypotheses and identify potential therapeutic targets from model predictions. Cellular responses to external stimuli depend on dynamic features of multipathway network signaling; thus, cell behavior is influenced in a complex manner by the environment and by intrinsic properties. Methods of multivariate systems analysis have provided an understanding of these convoluted effects, but only for relatively simplified examples in vitro. To determine whether such approaches could be successfully used in vivo, we analyzed the signaling network that determines the response of intestinal epithelial cells to tumor necrosis factor–α (TNF-α). We built data-driven, partial least-squares discriminant analysis (PLSDA) models based on signaling, apoptotic, and proliferative responses in the mouse small intestinal epithelium after systemic exposure to TNF-α. The extracellular signal–regulated kinase (ERK) signaling axis was a critical modulator of the temporal variation in apoptosis at different doses of TNF-α and of the spatial variation in proliferation in distinct intestinal regions. Inhibition of MEK, a mitogen-activated protein kinase kinase upstream of ERK, altered the signaling network and changed the temporal and spatial phenotypes consistent with model predictions. Our results demonstrate the dynamic, adaptive nature of in vivo signaling networks and identify natural, tissue-level variation in responses that can be deconvoluted only with quantitative, multivariate computational modeling. This study lays a foundation for the use of systems-based approaches to understand how dysregulation of the cellular network state underlies complex diseases.
Cancer Research | 2008
Reza Beheshti Zavareh; Ken S. Lau; Rose Hurren; Alessandro Datti; David J. Ashline; Marcela Gronda; Pam Cheung; Craig D. Simpson; Wei Liu; Amanda R. Wasylishen; Paul C. Boutros; Hui Shi; Amudha Vengopal; Igor Jurisica; Linda Z. Penn; Vern Reinhold; Shereen Ezzat; Jeff Wrana; David R. Rose; Harry Schachter; James W. Dennis; Aaron D. Schimmer
Aberrant N-linked glycans promote the malignant potential of cells by enhancing the epithelial-to-mesenchymal transition and the invasive phenotype. To identify small molecule inhibitors of N-glycan biosynthesis, we developed a chemical screen based on the ability of the tetravalent plant lectin L-phytohemagglutinin (L-PHA) to bind and crosslink surface glycoproteins with beta1,6GlcNAc-branched complex type N-glycans and thereby induce agglutination and cell death. In this screen, Jurkat cells were treated with a library of off-patent chemicals (n = 1,280) to identify molecules that blocked L-PHA-induced death. The most potent hit from this screen was the cardiac glycoside (CG) dihydroouabain. In secondary assays, a panel of CGs was tested for their effects on L-PHA-induced agglutination and cell death. All of the CGs tested inhibited L-PHA-induced death in Jurkat cells, and the most potent CG tested was digoxin with an EC(50) of 60 +/- 20 nmol/L. Digoxin also increased the fraction of some concanavalin A-binding N-glycans. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, digoxin specifically increased GlcNAc(1)Man(3)GlcNAc(2)Fuc(1) and GlcNAc(2)Man(3)GlcNAc(2)Fuc(1) oligosaccharides demonstrating an impairment of the N-glycan pathway. Consistent with this effect on the N-glycan pathway, digoxin inhibited N-glycosylation-mediated processes of tumor cell migration and invasion. Furthermore, digoxin prevented distant tumor formation in two mouse models of metastatic prostate cancer. Thus, taken together, our high throughput screen identified CGs as modifiers of the N-glycan pathway. These molecules can be used as tools to better understand the role of N-glycans in normal and malignant cells. Moreover, these results may partly explain the anticancer effect of CGs in cardiovascular patients.
Cancer Research | 2007
Richard Mendelsohn; Pam Cheung; Lloyd C. Berger; Emily A. Partridge; Ken S. Lau; Alessandro Datti; Judy Pawling; James W. Dennis
Golgi beta1,6N-acetylglucosaminyltransferase V (Mgat5) produces beta1,6GlcNAc-branched complex N-glycans on cell surface glycoproteins that bind to galectins and promote surface residency of glycoproteins, including cytokine receptors. Carcinoma cells from polyomavirus middle T (PyMT) transgenic mice on a Mgat5-/- background have reduced surface levels of epidermal growth factor (EGF) and transforming growth factor-beta (TGF-beta) receptors and are less sensitive to acute stimulation by cytokines in vitro compared with PyMT Mgat5+/+ tumor cells but are nonetheless tumorigenic when injected into mice. Here, we report that PyMT Mgat5-/- cells are reduced in size, checkpoint impaired, and following serum withdrawal, fail to down-regulate glucose transport, protein synthesis, reactive oxygen species (ROS), and activation of Akt and extracellular signal-regulated kinase. To further characterize Mgat5+/+ and Mgat5-/- tumor cells, a screen of pharmacologically active compounds was done. Mgat5-/- tumor cells were comparatively hypersensitive to the ROS inducer 2,3-dimethoxy-1,4-naphthoquinone, hyposensitive to tyrosine kinase inhibitors, to Golgi disruption by brefeldin A, and to mitotic arrest by colcemid, hydroxyurea, and camptothecin. Finally, regulation of ROS, glucose uptake, and sensitivities to EGF and TGF-beta were rescued by Mgat5 expression or by hexosamine supplementation to complex N-glycan biosynthesis in Mgat5-/- cells. Our results suggest that complex N-glycans sensitize tumor cells to growth factors, and Mgat5 is required to balance responsiveness to growth and arrest cues downstream of metabolic flux.
Molecules and Cells | 2009
Ken S. Lau; Kevin M. Haigis
The RAS family of oncoproteins has been studied extensively for almost three decades. While we know that activation of RAS represents a key feature of malignant transformation for many cancers, we are only now beginning to understand the complex underpinnings of RAS biology. Here, we will discuss emerging cancer genome sequencing data in the context of what is currently known about RAS function. Taken together, retrospective studies of primary human tissues and prospective studies of experimental models support the notion that the variable mutation frequencies exhibited by the RAS oncogenes reflect unique functions of the RAS oncoproteins.
BioTechniques | 2008
David Katz; Emma Ito; Ken S. Lau; Joseph D. Mocanu; Carlo Bastianutto; Aaron D. Schimmer; Fei-Fei Liu
The colony formation assay (CFA) is the gold standard for measuring the effects of cytotoxic agents on cancer cells in vitro; however, in its traditional 6-well format, it is a time-consuming assay, particularly when evaluating combination therapies. In the interest of increased efficiency, the 6-well CFA was converted to a 96-well format using an automated colony counting algorithm. The 96-well CFA was validated using ionizing radiation therapy on the FaDu (human hypopharyngeal squamous cell) and A549 (human lung) cancer cell lines. Its ability to evaluate combination therapies was investigated by the generation of dose-response curves for the combination of cisplatin and radiation therapy on FaDu and A549 cells. The 96-well CFA was then transferred to a robotic platform for evaluating its potential as a high-throughput screening (HTS) readout. The LOPAC1280 library was screened against FaDu cells, and eight putative hits were identified. Using the 96-well CFA to validate the eight putative chemicals, six of the eight were confirmed, resulting in a positive hit rate of 75%. These data indicate that the 96-well CFA can be adopted as an efficient alternative assay to the 6-well CFA in evaluating single and combination therapies in vitro, providing a possible readout that could be used on a HTS platform.
Molecular Systems Biology | 2016
Alan J. Simmons; Amrita Banerjee; Eliot T. McKinley; Cherie' R Scurrah; Charles A. Herring; Leslie Gewin; Ryota Masuzaki; Seth J. Karp; Jeffrey L. Franklin; Michael J. Gerdes; Jonathan M. Irish; Robert J. Coffey; Ken S. Lau
Understanding heterogeneous cellular behaviors in a complex tissue requires the evaluation of signaling networks at single‐cell resolution. However, probing signaling in epithelial tissues using cytometry‐based single‐cell analysis has been confounded by the necessity of single‐cell dissociation, where disrupting cell‐to‐cell connections inherently perturbs native cell signaling states. Here, we demonstrate a novel strategy (Disaggregation for Intracellular Signaling in Single Epithelial Cells from Tissue—DISSECT) that preserves native signaling for Cytometry Time‐of‐Flight (CyTOF) and fluorescent flow cytometry applications. A 21‐plex CyTOF analysis encompassing core signaling and cell‐identity markers was performed on the small intestinal epithelium after systemic tumor necrosis factor‐alpha (TNF‐α) stimulation. Unsupervised and supervised analyses robustly selected signaling features that identify a unique subset of epithelial cells that are sensitized to TNF‐α‐induced apoptosis in the seemingly homogeneous enterocyte population. Specifically, p‐ERK and apoptosis are divergently regulated in neighboring enterocytes within the epithelium, suggesting a mechanism of contact‐dependent survival. Our novel single‐cell approach can broadly be applied, using both CyTOF and multi‐parameter flow cytometry, for investigating normal and diseased cell states in a wide range of epithelial tissues.