Kevin M. Haigis
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin M. Haigis.
Cell | 2006
Marcia C. Haigis; Raul Mostoslavsky; Kevin M. Haigis; Kamau Fahie; Danos C. Christodoulou; Andrew J. Murphy; David M. Valenzuela; George D. Yancopoulos; Margaret Karow; Gil Blander; Cynthia Wolberger; Tomas A. Prolla; Richard Weindruch; Frederick W. Alt; Leonard Guarente
Sir2 is an NAD-dependent deacetylase that connects metabolism with longevity in yeast, flies, and worms. Mammals have seven Sir2 homologs (SIRT1-7). We show that SIRT4 is a mitochondrial enzyme that uses NAD to ADP-ribosylate and downregulate glutamate dehydrogenase (GDH) activity. GDH is known to promote the metabolism of glutamate and glutamine, generating ATP, which promotes insulin secretion. Loss of SIRT4 in insulinoma cells activates GDH, thereby upregulating amino acid-stimulated insulin secretion. A similar effect is observed in pancreatic beta cells from mice deficient in SIRT4 or on the dietary regimen of calorie restriction (CR). Furthermore, GDH from SIRT4-deficient or CR mice is insensitive to phosphodiesterase, an enzyme that cleaves ADP-ribose, suggesting the absence of ADP-ribosylation. These results indicate that SIRT4 functions in beta cell mitochondria to repress the activity of GDH by ADP-ribosylation, thereby downregulating insulin secretion in response to amino acids, effects that are alleviated during CR.
Nature Genetics | 2008
Kevin M. Haigis; Krystle R. Kendall; Yufang Wang; Ann Cheung; Marcia C. Haigis; Jonathan N. Glickman; Michiko Niwa-Kawakita; Alejandro Sweet-Cordero; Judith Sebolt-Leopold; Kevin Shannon; Jeffrey Settleman; Marco Giovannini; Tyler Jacks
Kras is commonly mutated in colon cancers, but mutations in Nras are rare. We have used genetically engineered mice to determine whether and how these related oncogenes regulate homeostasis and tumorigenesis in the colon. Expression of K-RasG12D in the colonic epithelium stimulated hyperproliferation in a Mek-dependent manner. N-RasG12D did not alter the growth properties of the epithelium, but was able to confer resistance to apoptosis. In the context of an Apc-mutant colonic tumor, activation of K-Ras led to defects in terminal differentiation and expansion of putative stem cells within the tumor epithelium. This K-Ras tumor phenotype was associated with attenuated signaling through the MAPK pathway, and human colon cancer cells expressing mutant K-Ras were hypersensitive to inhibition of Raf, but not Mek. These studies demonstrate clear phenotypic differences between mutant Kras and Nras, and suggest that the oncogenic phenotype of mutant K-Ras might be mediated by noncanonical signaling through Ras effector pathways.
Nature Reviews Molecular Cell Biology | 2012
Ian M. Ahearn; Kevin M. Haigis; Dafna Bar-Sagi; Mark R. Philips
RAS proteins are monomeric GTPases that act as binary molecular switches to regulate a wide range of cellular processes. The exchange of GTP for GDP on RAS is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which regulate the activation state of RAS without covalently modifying it. By contrast, post-translational modifications (PTMs) of RAS proteins direct them to various cellular membranes and, in some cases, modulate GTP–GDP exchange. Important RAS PTMs include the constitutive and irreversible remodelling of its carboxy-terminal CAAX motif by farnesylation, proteolysis and methylation, reversible palmitoylation, and conditional modifications, including phosphorylation, peptidyl-prolyl isomerisation, monoubiquitylation, diubiquitylation, nitrosylation, ADP ribosylation and glucosylation.
Nature | 2012
Devarati Mitra; Xi Luo; Ann M. Morgan; Jin Wang; Mai P. Hoang; Jennifer Lo; Candace R. Guerrero; Jochen K. Lennerz; Martin C. Mihm; Jennifer A. Wargo; Kathleen C. Robinson; Suprabha P. Devi; Jillian C. Vanover; John A. D'Orazio; Martin McMahon; Marcus Bosenberg; Kevin M. Haigis; Daniel A. Haber; Yinsheng Wang; David E. Fisher
People with pale skin, red hair, freckles and an inability to tan—the ‘red hair/fair skin’ phenotype—are at highest risk of developing melanoma, compared to all other pigmentation types. Genetically, this phenotype is frequently the product of inactivating polymorphisms in the melanocortin 1 receptor (MC1R) gene. MC1R encodes a cyclic AMP-stimulating G-protein-coupled receptor that controls pigment production. Minimal receptor activity, as in red hair/fair skin polymorphisms, produces the red/yellow pheomelanin pigment, whereas increasing MC1R activity stimulates the production of black/brown eumelanin. Pheomelanin has weak shielding capacity against ultraviolet radiation relative to eumelanin, and has been shown to amplify ultraviolet-A-induced reactive oxygen species. Several observations, however, complicate the assumption that melanoma risk is completely ultraviolet-radiation-dependent. For example, unlike non-melanoma skin cancers, melanoma is not restricted to sun-exposed skin and ultraviolet radiation signature mutations are infrequently oncogenic drivers. Although linkage of melanoma risk to ultraviolet radiation exposure is beyond doubt, ultraviolet-radiation-independent events are likely to have a significant role. Here we introduce a conditional, melanocyte-targeted allele of the most common melanoma oncoprotein, BRAFV600E, into mice carrying an inactivating mutation in the Mc1r gene (these mice have a phenotype analogous to red hair/fair skin humans). We observed a high incidence of invasive melanomas without providing additional gene aberrations or ultraviolet radiation exposure. To investigate the mechanism of ultraviolet-radiation-independent carcinogenesis, we introduced an albino allele, which ablates all pigment production on the Mc1re/e background. Selective absence of pheomelanin synthesis was protective against melanoma development. In addition, normal Mc1re/e mouse skin was found to have significantly greater oxidative DNA and lipid damage than albino-Mc1re/e mouse skin. These data suggest that the pheomelanin pigment pathway produces ultraviolet-radiation-independent carcinogenic contributions to melanomagenesis by a mechanism of oxidative damage. Although protection from ultraviolet radiation remains important, additional strategies may be required for optimal melanoma prevention.
Nature | 2008
Erick J. Morris; Jun-Yuan Ji; Fajun Yang; Luisa Di Stefano; Anabel Herr; Nam Sung Moon; Eun Jeong Kwon; Kevin M. Haigis; Anders M. Näär; Nicholas J. Dyson
The E2F1 transcription factor can promote proliferation or apoptosis when activated, and is a key downstream target of the retinoblastoma tumour suppressor protein (pRB). Here we show that E2F1 is a potent and specific inhibitor of β-catenin/T-cell factor (TCF)-dependent transcription, and that this function contributes to E2F1-induced apoptosis. E2F1 deregulation suppresses β-catenin activity in an adenomatous polyposis coli (APC)/glycogen synthase kinase-3 (GSK3)-independent manner, reducing the expression of key β-catenin targets including c-MYC. This interaction explains why colorectal tumours, which depend on β-catenin transcription for their abnormal proliferation, keep RB1 intact. Remarkably, E2F1 activity is also repressed by cyclin-dependent kinase-8 (CDK8), a colorectal oncoprotein. Elevated levels of CDK8 protect β-catenin/TCF-dependent transcription from inhibition by E2F1. Thus, by retaining RB1 and amplifying CDK8, colorectal tumour cells select conditions that collectively suppress E2F1 and enhance the activity of β-catenin.
Genome Biology | 2007
Sergio Kaiser; Young Kyu Park; Jeffrey L. Franklin; Richard B. Halberg; Ming Yu; Walter J. Jessen; Johannes M Freudenberg; Xiaodi Chen; Kevin M. Haigis; Anil G. Jegga; Sue Kong; Bhuvaneswari Sakthivel; Huan Xu; Timothy Reichling; Mohammad Azhar; Gregory P. Boivin; Reade B. Roberts; Anika C. Bissahoyo; Fausto Gonzales; Greg Bloom; Steven Eschrich; Scott L. Carter; Jeremy Aronow; John Kleimeyer; Michael Kleimeyer; Vivek Ramaswamy; Stephen H. Settle; Braden Boone; Shawn Levy; Jonathan M. Graff
BackgroundThe expression of carcino-embryonic antigen by colorectal cancer is an example of oncogenic activation of embryonic gene expression. Hypothesizing that oncogenesis-recapitulating-ontogenesis may represent a broad programmatic commitment, we compared gene expression patterns of human colorectal cancers (CRCs) and mouse colon tumor models to those of mouse colon development embryonic days 13.5-18.5.ResultsWe report here that 39 colon tumors from four independent mouse models and 100 human CRCs encompassing all clinical stages shared a striking recapitulation of embryonic colon gene expression. Compared to normal adult colon, all mouse and human tumors over-expressed a large cluster of genes highly enriched for functional association to the control of cell cycle progression, proliferation, and migration, including those encoding MYC, AKT2, PLK1 and SPARC. Mouse tumors positive for nuclear β-catenin shifted the shared embryonic pattern to that of early development. Human and mouse tumors differed from normal embryonic colon by their loss of expression modules enriched for tumor suppressors (EDNRB, HSPE, KIT and LSP1). Human CRC adenocarcinomas lost an additional suppressor module (IGFBP4, MAP4K1, PDGFRA, STAB1 and WNT4). Many human tumor samples also gained expression of a coordinately regulated module associated with advanced malignancy (ABCC1, FOXO3A, LIF, PIK3R1, PRNP, TNC, TIMP3 and VEGF).ConclusionCross-species, developmental, and multi-model gene expression patterning comparisons provide an integrated and versatile framework for definition of transcriptional programs associated with oncogenesis. This approach also provides a general method for identifying pattern-specific biomarkers and therapeutic targets. This delineation and categorization of developmental and non-developmental activator and suppressor gene modules can thus facilitate the formulation of sophisticated hypotheses to evaluate potential synergistic effects of targeting within- and between-modules for next-generation combinatorial therapeutics and improved mouse models.
Clinical Cancer Research | 2012
Yu Imamura; Teppei Morikawa; Xiaoyun Liao; Paul Lochhead; Aya Kuchiba; Mai Yamauchi; Zhi Rong Qian; Reiko Nishihara; Jeffrey A. Meyerhardt; Kevin M. Haigis; Charles S. Fuchs; Shuji Ogino
Purpose: To assess prognostic roles of various KRAS oncogene mutations in colorectal cancer, BRAF mutation status must be controlled for because BRAF mutation is associated with poor prognosis, and almost all BRAF mutants are present among KRAS wild-type tumors. Taking into account experimental data supporting a greater oncogenic effect of codon 12 mutations compared with codon 13 mutations, we hypothesized that KRAS codon 12–mutated colorectal cancers might behave more aggressively than KRAS wild-type tumors and codon 13 mutants. Experimental design: Using molecular pathological epidemiology database of 1,261 rectal and colon cancers, we examined clinical outcome and tumor biomarkers of KRAS codon 12 and 13 mutations in 1,075 BRAF wild-type cancers (i.e., controlling for BRAF status). Cox proportional hazards model was used to compute mortality HR, adjusting for potential confounders, including stage, PIK3CA mutations, microsatellite instability, CpG island methylator phenotype, and LINE-1 methylation. Results: Compared with patients with KRAS wild-type/BRAF wild-type cancers (N = 635), those with KRAS codon 12 mutations (N = 332) experienced significantly higher colorectal cancer–specific mortality [log-rank P = 0.0001; multivariate HR, 1.30; 95% confidence interval (CI), 1.02–1.67; P = 0.037], whereas KRAS codon 13–mutated cases (N = 108) were not significantly associated with prognosis. Among the seven most common KRAS mutations, c.35G>T (p.G12V; N = 93) was associated with significantly higher colorectal cancer–specific mortality (log-rank P = 0.0007; multivariate HR, 2.00; 95% CI, 1.38–2.90, P = 0.0003) compared with KRAS wild-type/BRAF wild-type cases. Conclusions: KRAS codon 12 mutations (in particular, c.35G>T), but not codon 13 mutations, are associated with inferior survival in BRAF wild-type colorectal cancer. Our data highlight the importance of accurate molecular characterization in colorectal cancer. Clin Cancer Res; 18(17); 4753–63. ©2012 AACR.
Cancer Research | 2007
Joseph L. Kissil; Marita Walmsley; Linda Hanlon; Kevin M. Haigis; Carla F. Kim; Alejandro Sweet-Cordero; Matthew S. Eckman; David A. Tuveson; Anthony J. Capobianco; Victor L. J. Tybulewicz; Tyler Jacks
Given the prevalence of Ras mutations in human cancer, it is critical to understand the effector pathways downstream of oncogenic Ras leading to transformation. To directly assess the requirement for Rac1 in K-ras-induced tumorigenesis, we employed a model of lung cancer in which an oncogenic allele of K-ras could be activated by Cre-mediated recombination in the presence or absence of conditional deletion of Rac1. We show that Rac1 function is required for tumorigenesis in this model. Furthermore, although Rac1 deletion alone was compatible with cell viability and proliferation, when combined with K-ras activation in primary epithelial cells, loss of Rac1 caused a profound reduction in proliferation. These data show a specific requirement for Rac1 function in cells expressing oncogenic K-ras.
Diagnostic Molecular Pathology | 2010
Natsumi Irahara; Yoshifumi Baba; Katsuhiko Nosho; Kaori Shima; Liying Yan; Dora Dias-Santagata; Anthony John Iafrate; Charles S. Fuchs; Kevin M. Haigis; Shuji Ogino
Activating mutations in members of the RAS oncogene family (KRAS, HRAS, and NRAS) have been found in a variety of human malignancies, suggesting a dominant role in carcinogenesis. In colon cancers, KRAS mutations are common and clearly contribute to malignant progression. The frequency of NRAS mutations and their relationship with clinical, pathologic, and molecular features remains uncertain. We developed and validated a Pyroseqencing assay to detect NRAS mutations at codons 12, 13, and 61. Using a collection of 225 colorectal cancers from 2 prospective cohort studies, we examined the relationship between NRAS mutations, clinical outcome, and other molecular features, including mutation of KRAS, BRAF, and PIK3CA, microsatellite instability, and the CpG island methylator phenotype. Finally, we examined whether NRAS mutation was associated with patient survival or prognosis. NRAS mutations were detected in 5 (2.2%) of the 225 colorectal cancers and tended to occur in left-sided cancers arising in women, but did not seem to be associated with any of the molecular features that were examined.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Kevin M. Haigis; James G. Caya; Mark Reichelderfer; William F. Dove
Loss of function of the adenomatous polyposis coli (APC)/Apc tumor suppressor gene occurs early in the etiology of intestinal cancer in mammals. In human colonic tumors, genomic instability is proposed to be associated with tumor initiation by inducing loss of APC function. We have used a mouse model of inherited intestinal cancer (ApcMin/+, Min/+) to analyze the earliest stages of tumorigenesis in this organ. We find that tumors from C57BL/6 Min/+ mice have a stable karyotype and stable microsatellites. In contrast to previous claims, we find that homozygosity for the Min allele of Apc in tumors can proceed by homologous somatic recombination. Further, our analysis of early, benign human colorectal adenomas failed to reveal any evidence for generalized chromosomal or microsatellite instability. These results cast doubt on the hypothesis that either of these forms of genomic instability is necessary for the initial development of colorectal adenomas. We contrast our analysis of autochthonous primary tumors to other studies involving xenografts or cultured cells.