Ken Shirato
Kyorin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ken Shirato.
Biochemical and Biophysical Research Communications | 2009
Takuya Sakurai; Tetsuya Izawa; Takako Kizaki; Junetsu Ogasawara; Ken Shirato; Kazuhiko Imaizumi; Kazuto Takahashi; Hitoshi Ishida; Hideki Ohno
Increased oxidative stress in adipocytes causes dysregulated expression of inflammation-related adipokines. We have examined the effects of exercise training on oxidative stress in rat white adipose tissue (WAT), especially focusing on inflammation-related adipokines. The levels of lipid peroxidation in WAT of exercise-trained (TR) rats were lower than those in control (C) rats. The content of manganese-containing superoxide dismutase in WAT of TR rats was increased as compared with those in C rats. In contrast, the expression of the NADPH oxidase NOX2 protein in WAT was downregulated by exercise training. Moreover, the levels of inflammation-related adipokines, such as tumor necrosis factor-alpha and monocyte chemoattractant protein-1, in WAT of TR rats were lower than those in C rats. The effects of exercise training were more remarkable in visceral WAT than in subcutaneous. These results suggest that exercise training decreases the expression of inflammation-related adipokines by reducing oxidative stress in WAT.
Journal of Clinical Biochemistry and Nutrition | 2010
Ken Shirato; Kazuki Nakajima; Hiroaki Korekane; Shinji Takamatsu; Congxiao Gao; Takashi Angata; Kazuaki Ohtsubo; Naoyuki Taniguchi
Glucose is an energy substrate, as well as the primary source of nucleotide sugars, which are utilized as donor substrates in protein glycosylation. Appropriate glycosylation is necessary to maintain the stability of protein, and is also important in the localization and trafficking of proteins. The dysregulation of glycosylation results in the development of a variety of disorders, such as cancer, diabetes mellitus and emphysema. Glycosylation is kinetically regulated by dynamically changing the portfolio of glycosyltransferases, nucleotide sugars, and nucleotide sugar transporters, which together form a part of what is currently referred to as the ”Glycan cycle”. An excess or a deficiency in the expression of glycosyltransferases has been shown to alter the glycosylation pattern, which subsequently leads to the onset, progression and exacerbation of a number of diseases. Furthermore, alterations in intracellular nucleotide sugar levels can also modulate glycosylation patterns. It is observed that pathological hypoxic microenvironments frequently occur in solid cancers and inflammatory foci. Hypoxic conditions dramatically change gene expression profiles, by activating hypoxia-inducible factor-1, which mediates adaptive cellular responses. Hypoxia-induced glycosyltransferases and nucleotide sugar transporters have been shown to modulate glycosylation patterns that are part of the mechanism associated with cancer metastasis. Hypoxia-inducible factor-1 also induces the expression of glucose transporters and various types of glycolytic enzymes, leading to shifts in glucose metabolic patterns. This fact strongly suggests that hypoxic conditions are an important factor in modulating various nucleotide sugar biosynthetic pathways. This review discusses some of the current thinking of how hypoxia alters glucose metabolic fluxes that can modulate cellular glycosylation patterns and consequently modify cellular functions, particularly from the standpoint of the N-acetylglucosamine cycle, a part of the ”Glycan cycle”.
Journal of Biological Chemistry | 2012
Congxiao Gao; Toshitaka Maeno; Fumi Ota; Manabu Ueno; Hiroaki Korekane; Shinji Takamatsu; Ken Shirato; Akio Matsumoto; Satoshi Kobayashi; Keiichi Yoshida; Shinobu Kitazume; Kazuaki Ohtsubo; Tomoko Betsuyaku; Naoyuki Taniguchi
Background: Fut8−/− mice show emphysematous lesions, the major risk factor for which is exposure to cigarette smoke (CS). Results: Fut8+/− mice developed CS-induced emphysematous lesions, which are associated with an aberrant Smad7-Smad2-matrix metalloproteinase signaling pathway. Conclusion: Genetic ablation of Fut8 increases sensitivity to CS-induced emphysema. Significance: Core fucosylation appears to be involved in the development of chronic obstructive pulmonary disease. We previously demonstrated that a deficiency in core fucosylation caused by the genetic disruption of α1,6-fucosyltransferase (Fut8) leads to lethal abnormalities and the development of emphysematous lesions in the lung by attenuation of TGF-β1 receptor signaling. Herein, we investigated the physiological relevance of core fucosylation in the pathogenesis of emphysema using viable heterozygous knock-out mice (Fut8+/−) that were exposed to cigarette smoke (CS). The Fut8+/− mice exhibited a marked decrease in FUT8 activity, and matrix metalloproteinase (MMP)-9 activities were elevated in the lung at an early stage of exposure. Emphysema developed after a 3-month CS exposure, accompanied by the recruitment of large numbers of macrophages to the lung. CS exposure substantially and persistently elevated the expression level of Smad7, resulting in a significant reduction of Smad2 phosphorylation (which controls MMP-9 expression) in Fut8+/− mice and Fut8-deficient embryonic fibroblast cells. These in vivo and in vitro studies show that impaired core fucosylation enhances the susceptibility to CS and constitutes at least part of the disease process of emphysema, in which TGF-β-Smad signaling is impaired and the MMP-mediated destruction of lung parenchyma is up-regulated.
Pflügers Archiv: European Journal of Physiology | 2009
Ken Shirato; Takako Kizaki; Takuya Sakurai; Junetsu Ogasawara; Yoshinaga Ishibashi; Takehiko Iijima; Chikako Okada; Izumi Noguchi; Kazuhiko Imaizumi; Naoyuki Taniguchi; Hideki Ohno
Macrophages are distributed in all peripheral tissues and play a critical role in the first line of the innate immune defenses against bacterial infection by phagocytosis of bacterial pathogens through the macrophage scavenger receptor 1 (MSR1). Within tissues, the partial pressure of oxygen (pO2) decreases depending on the distance of cells from the closest O2-supplying blood vessel. However, it is not clear how the expression of MSR1 in macrophages is regulated by low pO2. On the other hand, hypoxia-inducible factor (HIF)-1α is well known to control hypoxic responses through regulation of hypoxia-inducible genes. Therefore, we investigated the effects of hypoxia and HIF-1α on MSR1 expression and function in the macrophage cell line RAW264. Exposure to 1% O2 or treatment with the hypoxia-mimetic agent cobalt chloride (CoCl2) significantly suppressed the expression of MSR1 mRNA, accompanied by a markedly increase in levels of nuclear HIF-1α protein. The overexpression of HIF-1α in RAW264 cells suppressed the expression of MSR1 mRNA and protein, transcriptional activity of the MSR1 gene, and phagocytic capacity against the Gram-positive bacteria Listeria monocytogenes. The suppression of MSR1 mRNA by hypoxia or CoCl2 was inhibited by YC-1, an inhibitor of HIF-1α, or by the depletion of HIF-1α expression by small interference RNA. These results indicate that hypoxia transcriptionally suppresses MSR1 expression through HIF-1α.
Molecular Immunology | 2009
Takako Kizaki; Ken Shirato; Takuya Sakurai; Junetsu Ogasawara; Shuji Oh-ishi; Takeshi Matsuoka; Tetsuya Izawa; Kazuhiko Imaizumi; Shukoh Haga; Hideki Ohno
Stimulation of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) triggers myeloid differentiation factor 88 (MyD88)-dependent early-phase NF-kappaB activation and Toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent late-phase NF-kappaB activation. In a previous study, we have shown that beta(2)-adrenergic receptor (beta(2)AR) functions as a negative regulator of NF-kappaB activation through beta-arrestin 2 in the macrophage cell line RAW264 and that down-regulation of beta(2)AR expression in response to LPS is essential for NF-kappaB activation and expression of its target gene, inducible nitric oxide synthase (NOS II). Here, we demonstrate that beta(2)AR plays an important role in TRIF-dependent late-phase NF-kappaB activation. LPS-stimulated down-regulation was induced in MyD88-knockdown cells, but not in TRIF-knockdown cells, suggesting that beta(2)AR expression was down-regulated by the TRIF-dependent pathway. On the other hand, depletion of beta(2)AR or beta-arrestin 2 expression by siRNA decreased cytoplasmic IkappaB alpha and abrogated late-phase IkappaB alpha degradation and NF-kappaB activation in response to LPS. Inducible nitric oxide synthase (NOS II) expression was increased continuously during 24 h of LPS stimulation in control cells, but decreased in beta(2)AR or beta-arrestin 2-knockdown cells after 6 h of LPS stimulation. These findings suggest that beta(2)AR functions not only as a negative regulator of NF-kappaB activation, but also as a stabilizing factor of the NF-kappaB/IkappaB alpha complex through cytoplasmic beta-arrestin 2, and that TRIF-dependent down-regulation of beta(2)AR expression increases the level of cytoplasmic NF-kappaB/IkappaB alpha complex free from beta-arrestin 2, leading to continuous late-phase NF-kappaB activation.
BioMed Research International | 2011
Shogo Sato; Ken Shirato; Kaoru Tachiyashiki; Kazuhiko Imaizumi
We discuss the functional roles of β2-adrenergic receptors in skeletal muscle hypertrophy and atrophy as well as the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented by the downregulation of the receptor. Endurance training improves oxidative performance partly by increasing β2-adrenergic receptor density in exercise-recruited slow-twitch muscles. However, excessive stimulation of β2-adrenergic receptors negates their beneficial effects. Although the preventive effects of β2-adrenergic receptor stimulation on atrophy induced by muscle disuse and catabolic hormones or drugs are observed, these catabolic conditions decrease β2-adrenergic receptor expression in slow-twitch muscles. These findings present evidence against the use of β2-adrenergic agonists in therapy for muscle wasting and weakness. Thus, β2-adrenergic receptors in the skeletal muscles play an important physiological role in the regulation of protein and energy balance.
Molecular & Cellular Proteomics | 2013
Kazuki Nakajima; Emi Ito; Kazuaki Ohtsubo; Ken Shirato; Rina Takamiya; Shinobu Kitazume; Takashi Angata; Naoyuki Taniguchi
Nucleotide sugars are the donor substrates of various glycosyltransferases, and an important building block in N- and O-glycan biosynthesis. Their intercellular concentrations are regulated by cellular metabolic states including diseases such as cancer and diabetes. To investigate the fate of UDP-GlcNAc, we developed a tracing method for UDP-GlcNAc synthesis and use, and GlcNAc utilization using 13C6-glucose and 13C2-glucosamine, respectively, followed by the analysis of mass isotopomers using LC-MS. Metabolic labeling of cultured cells with 13C6-glucose and the analysis of isotopomers of UDP-HexNAc (UDP-GlcNAc plus UDP-GalNAc) and CMP-NeuAc revealed the relative contributions of metabolic pathways leading to UDP-GlcNAc synthesis and use. In pancreatic insulinoma cells, the labeling efficiency of a 13C6-glucose motif in CMP-NeuAc was lower compared with that in hepatoma cells. Using 13C2-glucosamine, the diversity of the labeling efficiency was observed in each sugar residue of N- and O-glycans on the basis of isotopomer analysis. In the insulinoma cells, the low labeling efficiencies were found for sialic acids as well as tri- and tetra-sialo N-glycans, whereas asialo N-glycans were found to be abundant. Essentially no significant difference in secreted hyaluronic acids was found among hepatoma and insulinoma cell lines. This indicates that metabolic flows are responsible for the low sialylation in the insulinoma cells. Our strategy should be useful for systematically tracing each stage of cellular GlcNAc metabolism.
The Scientific World Journal | 2014
Shogo Sato; Takuya Sakurai; Junetsu Ogasawara; Ken Shirato; Yoshinaga Ishibashi; Shuji Oh-ishi; Kazuhiko Imaizumi; Shukoh Haga; Yoshiaki Hitomi; Tetsuya Izawa; Yoshinobu Ohira; Hideki Ohno; Takako Kizaki
It is now evident that many nuclear hormone receptors can modulate target gene expression. REV-ERBα, one of the nuclear hormone receptors with the capacity to alter clock function, is critically involved in lipid metabolism, adipogenesis, and the inflammatory response. Recent studies suggest that REV-ERBα plays a key role in the mediation between clockwork and inflammation. The purpose of the current study was to investigate the role of REV-ERBα in the regulation of interleukin-6 (il6) gene expression in murine macrophages. REV-ERBα agonists, or overexpression of rev-erb α in the murine macrophage cell line RAW264 cells, suppressed the induction of il6 mRNA following a lipopolysaccharide (LPS) endotoxin challenge. Also, rev-erb α overexpression decreased LPS-stimulated nuclear factor κB (NFκB) activation in RAW264 cells. We showed that REV-ERBα represses il6 expression not only indirectly through an NFκB binding motif but also directly through a REV-ERBα binding motif in the murine il6 promoter region. Furthermore, peritoneal macrophages from mice lacking rev-erb α increased il6 mRNA expression. These data suggest that REV-ERBα regulates the inflammatory response of macrophages through the suppression of il6 expression. REV-ERBα may therefore be identified as a potent anti-inflammatory receptor and be a therapeutic target receptor of inflammatory diseases.
Biochemical and Biophysical Research Communications | 2013
Ken Shirato; Congxiao Gao; Fumi Ota; Takashi Angata; Hidehiko Shogomori; Kazuaki Ohtsubo; Keiichi Yoshida; Bernd Lepenies; Naoyuki Taniguchi
Bacterial or viral infection of the airway plays a critical role in the pathogenesis and exacerbation of chronic obstructive pulmonary disease (COPD) which is expected to be the 3rd leading cause of death by 2020. The induction of inflammatory responses in immune cells as well as airway epithelial cells is observed in the disease process. There is thus a pressing need for the development of new therapeutics. Keratan sulfate (KS) is the major glycosaminoglycans (GAGs) of airway secretions, and is synthesized by epithelial cells on the airway surface. Here we report that a KS disaccharide, [SO3(-)-6]Galβ1-4[SO3(-)-6]GlcNAc, designated as L4, suppressed the production of Interleukin-8 (IL-8) stimulated by flagellin, a Toll-like receptor (TLR) 5 agonist, in normal human bronchial epithelial (NHBE) cells. Such suppressions were not observed by other L4 analogues, N-acetyllactosamine or chondroitin-6-sulfate disaccharide. Moreover, treatment of NHBE cells with L4 inhibited the flagellin-stimulated phosphorylation of epidermal growth factor receptor (EGFR), the down stream signaling pathway of TLRs in NHBE cells. These results suggest that L4 specifically blocks the interaction of flagellin with TLR5 and subsequently suppresses IL-8 production in NHBE cells. Taken together, L4 represents a potential molecule for prevention and treatment of airway inflammatory responses to bacteria infections, which play a critical role in exacerbation of COPD.
Life Sciences | 2011
Shogo Sato; Hideki Suzuki; Hisaya Tsujimoto; Ken Shirato; Kaoru Tachiyashiki; Kazuhiko Imaizumi
AIMS Glucocorticoids bind to the glucocorticoid receptor (GR) and increase catabolism of muscle proteins via the ubiquitin-proteasome pathway. Activation of β(2)-adrenergic receptor (β(2)-AR) in skeletal muscle has been shown to induce muscle hypertrophy by promoting muscle protein synthesis and/or attenuating protein degradation. The aim of this study was to investigate the correlation between disuse-induced muscle atrophy, and expression of GR and β(2)-AR. METHODS Rats were subjected to casted-immobilization (knee and foot arthrodesis), a model for muscle disuse, for 10 days. Fast-twitch (extensor digitorum longus: EDL) and slow-twitch (soleus: SOL) muscles were isolated and subsequently used for analysis. The expression of GR and β(2)-AR was analyzed by real-time RT-PCR and western blotting. In addition, we analyzed plasma catecholamine and corticosterone concentrations by ELISA. KEY FINDINGS Casted-immobilization-induced muscle atrophy was much greater in the SOL muscle than in the EDL muscle. Casted-immobilization decreased the expression of GR mRNA and protein in the SOL muscle but not in the EDL muscle. Although the expression of β(2)-AR protein in the cytosol and membrane-rich fractions was not changed by casted-immobilization in either muscle, casted-immobilization decreased the expression of β(2)-AR mRNA in the SOL muscle. Plasma catecholamine and corticosterone concentrations, however, were largely unaffected by casted-immobilization during the experimental period. SIGNIFICANCE This study provides evidence that casted-immobilization-induced muscle disuse downregulates GR expression in slow-twitch muscle. These results suggest that muscle disuse suppresses glucocorticoid signals, such as muscle protein breakdown and transcription of the β(2)-AR gene, via downregulation of GR expression in slow-twitch muscle.