Jun Tanihata
Waseda University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jun Tanihata.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Yoshitsugu Aoki; Toshifumi Yokota; Tetsuya Nagata; Akinori Nakamura; Jun Tanihata; Takashi Saito; Stephanie Duguez; Kanneboyina Nagaraju; Eric P. Hoffman; Terence A. Partridge; Shin'ichi Takeda
Duchenne muscular dystrophy (DMD), the commonest form of muscular dystrophy, is caused by lack of dystrophin. One of the most promising therapeutic approaches is antisense-mediated elimination of frame-disrupting mutations by exon skipping. However, this approach faces two major hurdles: limited applicability of each individual target exon and uncertain function and stability of each resulting truncated dystrophin. Skipping of exons 45–55 at the mutation hotspot of the DMD gene would address both issues. Theoretically it could rescue more than 60% of patients with deletion mutations. Moreover, spontaneous deletions of this specific region are associated with asymptomatic or exceptionally mild phenotypes. However, such multiple exon skipping of exons 45–55 has proved technically challenging. We have therefore designed antisense oligo (AO) morpholino mixtures to minimize self- or heteroduplex formation. These were tested as conjugates with cell-penetrating moieties (vivo-morpholinos). We have tested the feasibility of skipping exons 45–55 in H2K-mdx52 myotubes and in mdx52 mice, which lack exon 52. Encouragingly, with mixtures of 10 AOs, we demonstrated skipping of all 10 exons in vitro, in H2K-mdx52 myotubes and on intramuscular injection into mdx52 mice. Moreover, in mdx52 mice in vivo, systemic injections of 10 AOs induced extensive dystrophin expression at the subsarcolemma in skeletal muscles throughout the body, producing up to 15% of wild-type dystrophin protein levels, accompanied by improved muscle strength and histopathology without any detectable toxicity. This is a unique successful demonstration of effective rescue by exon 45–55 skipping in a dystrophin-deficient animal model.
Molecular therapy. Nucleic acids | 2015
Yusuke Echigoya; Yoshitsugu Aoki; Bailey Miskew; Dharminder Panesar; Aleksander Touznik; Tetsuya Nagata; Jun Tanihata; Akinori Nakamura; Kanneboyina Nagaraju; Toshifumi Yokota
Antisense-mediated exon skipping, which can restore the reading frame, is a most promising therapeutic approach for Duchenne muscular dystrophy. Remaining challenges include the limited applicability to patients and unclear function of truncated dystrophin proteins. Multiexon skipping targeting exons 45-55 at the mutation hotspot of the dystrophin gene could overcome both of these challenges. Previously, we described the feasibility of exons 45-55 skipping with a cocktail of Vivo-Morpholinos in vivo; however, the long-term efficacy and safety of Vivo-Morpholinos remains to be determined. In this study, we examined the efficacy and toxicity of exons 45-55 skipping by intravenous injections of 6 mg/kg 10-Vivo-Morpholino cocktail (0.6 mg/kg each vPMO) every 2 weeks for 18 weeks to dystrophic exon-52 knockout (mdx52) mice. Systemic skipping of the entire exons 45-55 region was induced, and the Western blot analysis exhibited the restoration of 5-27% of normal levels of dystrophin protein in skeletal muscles, accompanied by improvements in histopathology and muscle strength. No obvious immune response and renal and hepatic toxicity were detected at the end-point of the treatment. We demonstrate our new regimen with the 10-Vivo-Morpholino cocktail is effective and safe for long-term repeated systemic administration in the dystrophic mouse model.
Free Radical Biology and Medicine | 2015
Janek Hyzewicz; Jun Tanihata; Mutsuki Kuraoka; Naoki Ito; Yuko Miyagoe-Suzuki; Shin'ichi Takeda
High intensity training induces muscle damage in dystrophin-deficient mdx mice, an animal model for Duchenne muscular dystrophy. However, low intensity training (LIT) rescues the mdx phenotype and even reduces the level of protein carbonylation, a marker of oxidative damage. Until now, beneficial effects of LIT were mainly assessed at the physiological level. We investigated the effects of LIT at the molecular level on 8-week-old wild-type and mdx muscle using 2D Western blot and protein-protein interaction analysis. We found that the fast isoforms of troponin T and myosin binding protein C as well as glycogen phosphorylase were overcarbonylated and downregulated in mdx muscle. Some of the mitochondrial enzymes of the citric acid cycle were overcarbonylated, whereas some proteins of the respiratory chain were downregulated. Of functional importance, ATP synthase was only partially assembled, as revealed by Blue Native PAGE analysis. LIT decreased the carbonylation level and increased the expression of fast isoforms of troponin T and of myosin binding protein C, and glycogen phosphorylase. In addition, it increased the expression of aconitate hydratase and NADH dehydrogenase, and fully restored the ATP synthase complex. Our study demonstrates that the benefits of LIT are associated with lowered oxidative damage as revealed by carbonylation and higher expression of proteins involved in energy metabolism and muscle contraction. Potentially, these results will help to design therapies for DMD based on exercise mimicking drugs.
PLOS ONE | 2013
Yusuke Echigoya; Joshua Lee; Merryl Rodrigues; Tetsuya Nagata; Jun Tanihata; Ashkan Nozohourmehrabad; Dharminder Panesar; Bailey Miskew; Yoshitsugu Aoki; Toshifumi Yokota
Duchenne muscular dystrophy (DMD), one of the most common and lethal genetic disorders, and the mdx mouse myopathies are caused by a lack of dystrophin protein. These dystrophic muscles contain sporadic clusters of dystrophin-expressing revertant fibers (RFs), as detected by immunohistochemistry. RFs are known to arise from muscle precursor cells with spontaneous exon skipping (alternative splicing) and clonally expand in size with increasing age through the process of muscle degeneration/regeneration. The expansion of revertant clusters is thought to represent the cumulative history of muscle regeneration and proliferation of such precursor cells. However, the precise mechanisms by which RFs arise and expand are poorly understood. Here, to test the effects of mutation types and aging on RF expansion and muscle regeneration, we examined the number of RFs in mdx mice (containing a nonsense mutation in exon 23) and mdx52 mice (containing deletion mutation of exon 52) with the same C57BL/6 background at 2, 6, 12, and 18months of age. Mdx mice displayed a significantly higher number of RFs compared to mdx52 mice in all age groups, suggesting that revertant fiber expansion largely depends on the type of mutation and/or location in the gene. A significant increase in the expression and clustering levels of RFs was found beginning at 6months of age in mdx mice compared with mdx52 mice. In contrast to the significant expansion of RFs with increasing age, the number of centrally nucleated fibers and embryonic myosin heavy chain-positive fibers (indicative of cumulative and current muscle regeneration, respectively) decreased with age in both mouse strains. These results suggest that mutation types and aging differently affect revertant fiber expansion in mdx and mdx52 mice.
Journal of Physiological Sciences | 2009
Fuuun Kawano; Jun Tanihata; Shogo Sato; Sachiko Nomura; Akira Shiraishi; Kaoru Tachiyashiki; Kazuhiko Imaizumi
Glucocorticoids are known to increase the density and mRNA levels of β-adrenoceptors (β-AR) via the glucocorticoid receptor (GR) in many tissues. However, the effects of these changes in the skeletal and cardiac muscles remain relatively unknown. We have investigated the effects of dexamethasone on the expression of the β1-, β2-, and β3-AR mRNAs and GR mRNA in fast-twitch fiber-rich extensor digitorum longus (EDL), slow-twitch fiber-rich soleus (SOL), and left ventricle (LV) muscles by real-time quantitative RT-PCR. Male rats were divided into a dexamethasone group and control group. The weight, RNA concentration, and total RNA content of EDL muscle were 0.76-, 0.85-, and 0.65-fold lower, respectively, in the dexamethasone group than in the control group. The weight, RNA concentration, and total RNA content of SOL muscle were 0.92-, 0.87-, and 0.81-fold lower, respectively, in the dexamethasone group than in the control group; these differences were significant. However, the weight/body weight and total RNA content/body weight of LV muscle were 1.38- and 1.39-fold higher, respectively, in the dexamethasone group than in the control group, respectively; these differences were also significant. Dexamethasone significantly decreased GR mRNA expression in EDL muscle without changing the expression of the β1-, β2-, and β3-AR mRNAs. However, dexamethasone significantly decreased the expressions of β2-AR and GR mRNAs in SOL muscle and significantly increased β1-AR mRNA expression in LV muscle—without changing GR mRNA expression. These results suggest that the effects of dexamethasone on the expression of β1- and β2-AR mRNAs and muscle mass depend on the muscle contractile and/or constructive types.
Journal of Gene Medicine | 2008
Jun Tanihata; Naoki Suzuki; Yuko Miyagoe-Suzuki; Kazuhiko Imaizumi; Shin'ichi Takeda
Duchenne muscular dystrophy is caused by the absence of the muscle cytoskeletal protein dystrophin. Utrophin is an autosomal homologue of dystrophin, and overexpression of utrophin is expected to compensate for the dystrophin deficit. We previously reported that the 5.4‐kb 5′‐flanking region of the utrophin gene containing the A‐utrophin core promoter did not drive transgene expression in heart and skeletal muscle. To clarify the regulatory mechanism of utrophin expression, we generated a nuclear localization signal‐tagged LacZ transgenic (Tg) mouse, in which the LacZ gene was driven by the 129‐bp downstream utrophin enhancer (DUE) and the 5.4‐kb 5′‐flanking region of the utrophin promoter.
American Journal of Pathology | 2017
Janek Hyzewicz; Jun Tanihata; Mutsuki Kuraoka; Yuko Nitahara-Kasahara; Teiva Beylier; Urs T. Ruegg; Axel Vater; Shin'ichi Takeda
Inflammatory events occurring in dystrophic muscles contribute to the progression of Duchenne muscular dystrophy (DMD). Low-intensity training (LIT) attenuates the phenotype of mdx mice, an animal model for DMD. Therefore, we postulated that LIT could have anti-inflammatory properties. We assessed levels of inflammatory cytokines and infiltrated immune cells in gastrocnemius muscle of mdx mice after LIT. We detected high levels of complement component C5a, chemokine ligand (CCL) 2, CD68+ monocytes/macrophages, and proinflammatory M1 macrophages in muscles of mdx mice. LIT decreased CCL2 levels, increased CD68+ cell numbers, and shifted the macrophage population to the regenerative M2 type. We investigated whether inhibition of C5a or CCL2 with L-aptamers could mimic the effects of LIT. Although no effect of CCL2 inhibition was detected, treatment with the C5a inhibitor, NOX-D21, rescued the phenotype of nonexercised mdx mice, but not of exercised ones. In both cases, the level of CD68+ cells increased and macrophage populations leaned toward the inflammatory M1 type. In muscles of nonexercised treated mice, the level of IL-1 receptor antagonist increased, damage decreased, and fibers were switched toward the glycolytic fast type; in muscles of exercised mice, fibers were switched to the oxidative slow type. These results reveal the effects of LIT on the inflammatory status of mdx mice and suggest that NOX-D21 could be an anti-inflammatory drug for DMD.
International Journal of Molecular Sciences | 2016
Hitoshi Suzuki; Yoshitsugu Aoki; Toshiki Kameyama; Takashi Saito; Satoru Masuda; Jun Tanihata; Tetsuya Nagata; Akila Mayeda; Shin'ichi Takeda; Toshifumi Tsukahara
Duchenne muscular dystrophy (DMD) is a severe muscular disorder. It was reported that multiple exon skipping (MES), targeting exon 45–55 of the DMD gene, might improve patients’ symptoms because patients who have a genomic deletion of all these exons showed very mild symptoms. Thus, exon 45–55 skipping treatments for DMD have been proposed as a potential clinical cure. Herein, we detected the expression of endogenous exons 44–56 connected mRNA transcript of the DMD using total RNAs derived from human normal skeletal muscle by reverse transcription polymerase chain reaction (RT-PCR), and identified a total of eight types of MES products around the hotspot. Surprisingly, the 5′ splice sites of recently reported post-transcriptional introns (remaining introns after co-transcriptional splicing) act as splicing donor sites for MESs. We also tested exon combinations to generate DMD circular RNAs (circRNAs) and determined the preferential splice sites of back-splicing, which are involved not only in circRNA generation, but also in MESs. Our results fit the current circRNA-generation model, suggesting that upstream post-transcriptional introns trigger MES and generate circRNA because its existence is critical for the intra-intronic interaction or for extremely distal splicing.
MedChemComm | 2015
Yoshiaki Masaki; Takeshi Inde; Tetsuya Nagata; Jun Tanihata; Takashi Kanamori; Kohji Seio; Shin'ichi Takeda; Mitsuo Sekine
Incorporation of 2′-O-methyl-2-thioribothymidine (s2Tm) into antisense oligoribonucleotides significantly enhanced the exon skipping activity in Duchenne muscular dystrophy model mice.
Biochemical and Biophysical Research Communications | 2018
Jun Tanihata; Tetsuya Nagata; Naoki Ito; Takashi Saito; Akinori Nakamura; Susumu Minamisawa; Yoshitsugu Aoki; Urs T. Ruegg; Shin'ichi Takeda
Duchenne muscular dystrophy (DMD) and the less severe Becker muscular dystrophy (BMD) are due to mutations in the DMD gene. Previous reports show that in-frame deletion of exons 45-55 produces an internally shorted, but functional, dystrophin protein resulting in a very mild BMD phenotype. In order to elucidate the molecular mechanism leading to this phenotype, we generated exon 45-55 deleted dystrophin transgenic/mdx (Tg/mdx) mice. Muscular function of Tg/mdx mice was restored close to that of wild type (WT) mice but the localization of the neuronal type of nitric oxide synthase was changed from the sarcolemma to the cytosol. This led to hyper-nitrosylation of the ryanodine receptor 1 causing increased Ca2+ release from the sarcoplasmic reticulum. On the other hand, Ca2+ reuptake by the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) was restored to the level of WT mice, suggesting that the Ca2+ dysregulation had been compensated by SERCA activation. In line with this, expression of sarcolipin (SLN), a SERCA-inhibitory peptide, was upregulated in mdx mice, but strongly reduced in Tg/mdx mice. Furthermore, knockdown of SLN ameliorated the cytosolic Ca2+ homeostasis and the dystrophic phenotype in mdx mice. These findings suggest that SLN may be a novel target for DMD therapy.