Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kendall B. Wallace is active.

Publication


Featured researches published by Kendall B. Wallace.


Cell Biology and Toxicology | 2007

Adriamycin-induced oxidative mitochondrial cardiotoxicity

J. M. Berthiaume; Kendall B. Wallace

The anticancer agent Adriamycin (ADR) has long been recognized to induce a dose-limiting cardiotoxicity. Numerous studies have attempted to characterize and elucidate the mechanism(s) behind its cardiotoxic effect. Despite a wealth of data covering a wide-range of effects mediated by the drug, the definitive mechanism remains a matter of debate. However, there is consensus that this toxicity is related to the induction of reactive oxygen species (ROS). Induction of ROS in the heart by ADR occurs via redox cycling of the drug at complex I of the electron transport chain. Many studies support the theory that mitochondria are a primary target of ADR-induced oxidative stress, both acutely and long-term. This review focuses on the effects of ADR redox cycling on the mitochondrion, which support the hypothesis that these organelles are indeed a major factor in ADR cardiotoxicity. This review has been constructed with particular emphasis on studies utilizing cardiac models with clinically relevant doses or concentrations of ADR in the hope of advancing our understanding of the mechanisms of ADR toxicity. This compilation of current data may reveal valuable insights for the development of therapeutic strategies better tailored to minimizing the dose-limiting effect of ADR.


Toxicology Letters | 2002

Perfluorooctanoate, perflourooctanesulfonate, and N-ethyl perfluorooctanesulfonamido ethanol; peroxisome proliferation and mitochondrial biogenesis.

Jessica Berthiaume; Kendall B. Wallace

Compounds that cause peroxisome proliferation in rats and mice have been reported to interfere with mitochondrial (mt) bioenergetics and possibly biogenesis. The purpose of this investigation was to establish whether proliferation of peroxisomes and mitochondria are necessarily related. Perfluorooctanesulfonate (PFOS) and N-ethyl perfluorooctanesulfonamido ethanol (N-EtFOSE) were investigated as peroxisome proliferators in comparison to perfluorooctanoic acid (PFOA). Three parameters were chosen to assess peroxisome proliferation, stimulation of lauroyl CoA oxidase activity, reduction of serum cholesterol concentration, and hepatomegaly. mt Biogenesis was assessed through cytochrome oxidase activity, cytochrome content and mitochondrial DNA (mtDNA) copy number. PFOA, PFOS, or N-EtFOSE was administered via a single i.p. injection at 100 mg/kg in male rats, and measurements were made 3 days later. In this model, PFOS and PFOA share similar potencies as peroxisome proliferators, whereas N-EtFOSE showed no activity. mt Endpoints were altered only in the PFOA treatment group, which consisted of a decrease cytochrome oxidase activity in liver tissue and an increase in the mtDNA copy number. None of the perfluorooctanoates significantly altered mt cytochrome content following acute in vivo treatment. These data demonstrate that acute administration of PFOS or PFOA causes hepatic peroxisome proliferation in rats. However, stimulation of mt biogenesis is not a characteristic response of all peroxisome proliferators.


Toxicology Letters | 2001

Doxorubicin-induced persistent oxidative stress to cardiac myocytes.

Shaoyu Zhou; Carlos M. Palmeira; Kendall B. Wallace

We recently reported a cardioselective and cumulative oxidation of cardiac mitochondrial DNA (mtDNA) following subchronic administration of doxorubicin to rats. The mtDNA adducts persist for up to 5 weeks after cessation of doxorubicin treatment. Since the evidence suggests that this persistence of mtDNA adducts cannot be attributed to a lack of repair and replication, we investigated whether it might reflect a long-lasting stimulation of free radical-mediated adduct formation. Male Sprague-Dawley rats received weekly s.c. injections of either doxorubicin (2 mg/kg) or an equivalent volume of saline. Cardiac myocytes isolated from rats following 6 weekly injections of doxorubicin expressed a much higher rate of reactive oxygen species (ROS) formation compared to saline controls. This higher rate of ROS formation persisted for 5 weeks following the last injection. Associated with this was a persistent depression of GSH in heart tissue, while protein-thiol content was not markedly altered. These data suggest that the accumulation and persistence of oxidized mtDNA may be due, not to the stability of the adducts, but to some as yet undefined toxic lesion that causes long-lasting stimulation of ROS generation by doxorubicin. This persistent generation of ROS may contribute to the cumulative and irreversible cardiotoxicity observed clinically with the drug.


Cardiovascular Toxicology | 2007

Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis

Kendall B. Wallace

Adriamycin (doxorubicin) is a potent and broad-spectrum antineoplastic agent, the clinical utility of which is limited by the development of a cumulative and irreversible cardiomyopathy. Although the drug affects numerous structures in different cell types, the mitochondrion appears to a principal subcellular target for the development of cardiomyopathy. This review describes evidence demonstrating that adriamycin redox cycles on complex I of the mitochondrial electron transport chain to liberate highly reactive free radical species of molecular oxygen. The primary effect of adriamycin on mitochondrial performance is the interference with oxidative phosphorylation and inhibition of ATP synthesis. Free radicals liberated from adriamycin redox cycling are thought to be responsible for many of the secondary effects of adriamycin, including lipid peroxidation, the oxidation of both proteins and DNA, and the depletion of glutathione and pyridine nucleotide reducing equivalents in the cell. It is this altered redox status that is believed to cause assorted changes in intracellular regulation, including the induction of the mitochondrial permeability transition and complete loss of mitochondrial integrity and function. Associated with this is the interference with mitochondrial-mediated cell calcium signaling, which is implicated as essential to the capacity of mitochondria to participate in bioenergetic regulation in response to external signals reflecting changes in metabolic demand. If taken to an extreme, this loss of mitochondrial plasticity may manifest in the liberation of signals mediating either oncotic or necrotic cell death, further perpetuating the cardiac failure associated with adriamycin-induced mitochondrial cardiomyopathy.


Toxicologic Pathology | 2004

Serum Troponins as Biomarkers of Drug-Induced Cardiac Toxicity

Kendall B. Wallace; Elizabeth Hausner; Eugene H. Herman; Gordon D. Holt; James T. MacGregor; Alan L. Metz; Elizabeth Murphy; I.Y. Rosenblum; Frank D. Sistare; Malcolm York

Member of the Expert Working Group and Chair of the Expert Working Group and Corresponding Author, Professor, Department of Biochemistry & Molecular Biology, University of Minnesota School of Medicine, Duluth, MN FDA Liaison and FDA Center for Drug Evaluation and Research, Rockville, MD 20852 Center for Drug Evaluation and Research, FDA, Laurel, MD 20708 Principal Scientist, Oxford GlycoSciences, Montgomery Village, MD 20886-1265 FDA National Center for Toxicological Research, Rockville, MD 20857 Drug Safety Evaluation, Global Research and Development, Ann Arbor Laboratories, Pfizer Inc., Ann Arbor, MI 48105 Laboratory of Molecular Carcinogenesis, National Institutes of Environmental Health Sciences, Research Triangle Park, NC 27709 Director, General Toxicology, Drug Safety and Metabolism, Schering-Plough Research Institute, Lafayette, NJ 07848, and Manager, Clinical Pathology Laboratory, Preclinical Safety Sciences, GlaxoSmithKline, Hertfordshire, SG12, ODP, United Kingdom


Biochimica et Biophysica Acta | 1999

CARDIOSELECTIVE AND CUMULATIVE OXIDATION OF MITOCHONDRIAL DNA FOLLOWING SUBCHRONIC DOXORUBICIN ADMINISTRATION

Jose Serrano; Carlos M. Palmeira; Douglas W. Kuehl; Kendall B. Wallace

We recently reported the preferential accumulation of 8-hydroxydeoxyguanosine (8OHdG) adducts in cardiac mitochondrial DNA (mtDNA) following acute intoxication of rats with doxorubicin (C.M. Palmeira et al., Biochim. Biophys. Acta, 1321 (1997) 101-106). The concentration of 8OHdG adducts decreased to control values within 2 weeks. Since conventional antineoplastic therapy entails repeated administration of small doses of doxorubicin, it was of interest to characterize the kinetics for the accumulation and repair of 8OHdG adducts in the various DNA fractions. Weekly injections of doxorubicin (2 mg/kg, i.p.) to adult male Sprague-Dawley rats caused a cumulative dose-dependent increase in the concentration of 8OHdG adducts in both mtDNA and nuclear DNA (nDNA) from heart and liver. Following six weekly injections, the concentration of 8OHdG in cardiac mtDNA was 50% higher than liver mtDNA and twice that of cardiac nDNA. In contrast to the rapid repair of 8OHdG observed during the first days following an acute intoxicating dose of doxorubicin, the concentration of 8OHdG adducts remained constant between 1 and 5 weeks following the last injection. This was true for all DNA fractions examined. The cardioselective accumulation and persistence of 8OHdG adducts to mtDNA is consistent with the implication of mitochondrial dysfunction in the cumulative and irreversible cardiotoxicity observed clinically in patients receiving doxorubicin cancer chemotherapy.


Toxicological Sciences | 1997

Symposium overview: Mitochondria-mediated cell injury

Kendall B. Wallace; Janis T. Eells; V. M. C. Madeira; G. Cortopassi; Dean P. Jones

Mitochondria have long been known to participate in the process of cell injury associated with metabolic failure. Only recently, however, have we come to appreciate the role of mitochondria as primary intracellular targets in the initiation of cell dysfunction. In addition to ATP synthesis, mitochondria are also critical to modulation of cell redox status, osmotic regulation, pH control, and cytosolic calcium homeostasis and cell signaling. Mitochondria are susceptible to damage by oxidants, electrophiles, and lipophilic cations and weak acids. Chemical-induced mitochondrial dysfunction may be manifested as diverse bioenergetic disorders and considerable effort is required to distinguish between mechanisms involving critical mitochondrial targets and those in which mitochondrial dysfunction is secondary and plays only a modulatory role in cell injury. The following paragraphs review a few important examples of chemical-induced cytotoxic responses that are manifested as interference with mitochondrial metabolism and bioenergetics, gene regulation, or signal transduction in the form of apoptosis and altered cell cycle control. Greater understanding of the molecular mechanisms of mitochondrial bioenergetics, ion regulation, and genetics will lead to numerous additional examples of mitochondria-mediated cell injury, revealing important new insight regarding the prediction, prevention, diagnosis, and treatment of chemical-induced toxic tissue injury.


Toxicological Sciences | 2009

Structure-Activity Relationships and Human Relevance for Perfluoroalkyl Acid–Induced Transcriptional Activation of Peroxisome Proliferation in Liver Cell Cultures

James A. Bjork; Kendall B. Wallace

Perfluoroalkyl acids (PFAAs) are widely distributed and environmentally persistent agents whose potential toxicity is not yet fully characterized. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid elicit a number of potential toxicities in rodents, the most prevalent of which are governed by activation of the peroxisome proliferator-activated receptor alpha (PPARalpha). The purpose of this investigation was twofold: (1) To conduct a structure-activity relationship study of the transcriptional activation of peroxisome proliferation in primary rat liver cell cultures for PFAA-related carboxylic and sulfonic acids of varying carbon chain length and (2) to explore whether this activity can be translated to human liver cells in culture. Exposure to PFOA caused a dose-dependent stimulation of the expression of acyl-CoA oxidase (Acox), Cte/Acot1, and Cyp4a1/11 transcripts that are indicative of peroxisome proliferation in primary rat hepatocytes. PFOA concentrations of 30 microM and above caused cell injury characterized by the expression of Ddit3. Perfluorobutanoic acid (PFBA), on the other hand, stimulated Acox, Cte/Acot1, and Cyp4a1/11 gene expression in primary rat hepatocytes only at concentrations of 100 microM and above. Neither PFOA nor PFBA at concentrations up to 200 microM stimulated PPARalpha-related gene expression in either primary or HepG2 human liver cells. These data demonstrate that (1) PFFAs cause a concentration- and chain length-dependent increase in expression of gene targets related to cell injury and PPARalpha activation in primary rat hepatocytes, (2) the sulfonates are less potent than the corresponding carboxylates in stimulating PPARalpha-related gene expression in rat hepatocytes, and (3) stimulation of PPARalpha-mediated gene transcription is a mechanism that is not shared by human liver cells, adding further substantiation that PPARalpha-dependent liver toxicity in rodents does not extrapolate to assessing human health concerns.


Biochimica et Biophysica Acta | 1997

Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin

Carlos M. Palmeira; Jose Serrano; Douglas W. Kuehl; Kendall B. Wallace

The purpose of this investigation was to determine whether acute doxorubicin intoxication causes a preferential accumulation of 8-hydroxydeoxyguanosine (8OHdG) adducts to mitochondrial DNA (mtDNA) as opposed to nuclear DNA (nDNA), particularly in cardiac tissue. Adult male rats received a single i.p. bolus of doxorubicin (15 mg/kg) and were killed 1-14 days later. Acute intoxication with doxorubicin caused a 2-fold greater increase in 8OHdG adducts to mtDNA compared to nDNA, the concentration of adducts to both nDNA and mtDNA being 20%-40% greater for heart as opposed to liver. For both tissues, the relative abundance of adducts was highest at the earliest time-point examined (24 h) and decreased to control values by 2 weeks. The temporal dilution of 8OHdG adducts was not the result of cell hyperplasia and was only partially due to amplification of the mitochondrial genome, most probably via an increase in DNA copy number rather than a stimulation of mitochondrial biogenesis.


Cell Biology and Toxicology | 2009

Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets

Vilma A. Sardão; Paulo J. Oliveira; Jon Holy; Catarina R. Oliveira; Kendall B. Wallace

Doxorubicin (Dox) is a very potent antineoplastic agent used against several types of cancer, despite a cumulative cardiomyopathy that reduces the therapeutic index for treatment. H9c2 myoblast cells have been used as an in vitro model to study biochemical alterations induced by Dox treatment on cardiomyocyte cells. Despite the extensive work already published, few data are available regarding morphological alterations of H9c2 cells during Dox treatment. The purpose of the present work was to evaluate Dox-induced morphological alterations in H9c2 myoblasts, focusing especially on the nuclei, mitochondria, and structural fibrous proteins. Treatment of H9c2 cell with low concentrations of Dox causes alterations in fibrous structural proteins including the nuclear lamina and sarcomeric cardiac myosin, as well as mitochondrial depolarization and fragmentation, membrane blebbing with cell shape changes, and phosphatidylserine externalization. For higher Dox concentrations, more profound alterations are evident, including nuclear swelling with disruption of nuclear membrane structure, mitochondrial swelling, and extensive cytoplasm vacuolization. The results obtained indicate that Dox causes morphological alterations in mitochondrial, nuclear, and fibrous protein structures in H9c2 cells, which are dependent on the drug concentration. Data obtained with the present study allow for a better characterization of the effects of Dox on H9c2 myoblasts, used as a model to study Dox-induced cardiotoxicity. The results obtained also provide new and previously unknown targets that can contribute to understand the mechanisms involved in the cardiotoxicity of Dox.

Collaboration


Dive into the Kendall B. Wallace's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Butenhoff

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar

Christopher Lau

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Holy

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Kimber

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

George A. Parker

Charles River Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge